
ManySAT 1.5: solver description

Youssef Hamadi1,2, Said Jabbour3, and Lakhdar Sais4

1 Microsoft Research, 7 J J Thomson Avenue, Cambridge, United Kingdom
youssefh@microsoft.com

2 LIX École Polytechnique, F-91128 Palaiseau, France
3 Microsoft-INRIA joint-lab, 28, rue Jean Rostand, 91893 Orsay, France

said.jabbour@inria.fr
4 CRIL-CNRS, Université Lille Nord de France

Rue Jean Souvraz SP18, F-62307 Lens Cedex France
sais@cril.fr

Overview

ManySAT is a parallel DPLL-engine which includes all the classical features like
two-watched-literal, unit propagation, activity-based decision heuristics, lemma
deletion strategies, and clause learning [5, 6]. In addition to the classical first-UIP
scheme, it incorporates a new technique which extends the classical implication
graph used during conflict-analysis to exploit the satisfied clauses of a formula
[1].

When designing ManySat we decided to take advantage of the main weakness
of modern DPLLs: their sensitivity to parameter tuning. For instance, changing
parameters related to the restart strategy or to the variable selection heuristic
can completely change the performance of a solver on a particular problem. In a
multi-threading context, we can easily take advantage of this lack of robustness
by designing a system which will run different incarnation of a core DPLL-engine
on a particular problem. Each incarnation would exploit a particular parameter
set and their combination should represent a set of orthogonal strategies.

To allow ManySAT to perform better than any of the selected strategy,
conflict-clause sharing was added. Technically, this is implemented through lock-
less shared data structures. The version 1.5 introduces masters/slaves roles in
the portfolio. Masters are used to guide slaves in order to intensify their search
efforts. This architecture implements the well know diversification and intensifi-
cation principles which play an important role in combinatorial search [4].

Code

The system is written in C++ and has about 4000 lines of code. It is written on
top of minisat 2.02 [3], which was extended to accommodate the new learning
scheme, the various strategies, and our multi-threading clause sharing policy.
SatElite is systematically applied as a pre-processor [2].



References

1. Gilles Audemard, Lucas Bordeaux, Youssef Hamadi, Säıd Jabbour, and Lakhdar
Sais. A generalized framework for conflict analysis. In 11th International Conference
on Theory and Applications of Satisfiability Testing - SAT’2008, volume 4996 of
Lecture Notes in Computer Science, pages 21–27. Springer, 2008.

2. Niklas Eén and Armin Biere. Effective preprocessing in sat through variable and
clause elimination. In Fahiem Bacchus and Toby Walsh, editors, SAT, volume 3569
of Lecture Notes in Computer Science, pages 61–75. Springer, 2005.

3. Niklas Eén and Niklas Sörensson. An extensible sat-solver. In Enrico Giunchiglia
and Armando Tacchella, editors, SAT, volume 2919 of Lecture Notes in Computer
Science, pages 502–518. Springer, 2003.

4. L. Guo, Y. Hamadi, S. Jabbour, and L. Sais. Diversification and intensification in
parallel sat solving. In CP to appear, 2010.

5. Y. Hamadi, S. Jabbour, and L. Sais. Manysat: solver description. Technical Report
MSR-TR-2008-83, Microsoft Research, May 2008.

6. Y. Hamadi, S. Jabbour, and L. Sais. Manysat: a parallel SAT solver. Journal on
Satisfiability, Boolean Modeling and Computation (JSAT), under submission, 2009.


