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2 LIX École Polytechnique, F-91128 Palaiseau, France
3 Microsoft-INRIA joint-lab, 28, rue Jean Rostand, 91893 Orsay, France

said.jabbour@inria.fr
4 CRIL-CNRS, Université Lille Nord de France

Rue Jean Souvraz SP18, F-62307 Lens Cedex France
sais@cril.fr

Overview

ManySAT is a parallel DPLL-engine which includes all the classical features like
two-watched-literal, unit propagation, activity-based decision heuristics, lemma
deletion strategies, and clause learning [5, 6]. In addition to the classical first-UIP
scheme, it incorporates a new technique which extends the classical implication
graph used during conflict-analysis to exploit the satisfied clauses of a formula
[1].

When designing ManySat we decided to take advantage of the main weakness
of modern DPLLs: their sensitivity to parameter tuning. For instance, changing
parameters related to the restart strategy or to the variable selection heuristic
can completely change the performance of a solver on a particular problem. In a
multi-threading context, we can easily take advantage of this lack of robustness
by designing a system which will run different incarnation of a core DPLL-engine
on a particular problem. Each incarnation would exploit a particular parameter
set and their combination should represent a set of orthogonal strategies.

To allow ManySAT to perform better than any of the selected strategy,
conflict-clause sharing was added. Technically, this is implemented through lock-
less shared data structures. The version 1.5 introduces masters/slaves roles in
the portfolio. Masters are used to guide slaves in order to intensify their search
efforts. This architecture implements the well know diversification and intensifi-
cation principles which play an important role in combinatorial search [4].

Code

The system is written in C++ and has about 4000 lines of code. It is written on
top of minisat 2.02 [3], which was extended to accommodate the new learning
scheme, the various strategies, and our multi-threading clause sharing policy.
SatElite is systematically applied as a pre-processor [2].



References

1. Gilles Audemard, Lucas Bordeaux, Youssef Hamadi, Säıd Jabbour, and Lakhdar
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