
CirCUs 2.1 - SAT Race 2010 Edition⋆

Hyojung Han1, HoonSang Jin2, Hyondeuk Kim1, and Fabio Somenzi1

1 University of Colorado at Boulder
2 Cadence Design Systems

{Hyojung.Han,Hyondeuk.Kim,Fabio}@colorado.edu
{hsjin}@cadence.com

1 Description

CirCUs is a SAT solver based on the DPLL procedure and conflictclause recording
[7, 8, 2]. CirCUs includes most current popular techniques such as two-watched literals
scheme for BCP, activity-based decision heuristics, clause deletion strategies, restarting
heuristics, and first UIP-based clause learning. In particular, CirCUs adopts transforma-
tions of the CNF formula to be decided that allow them to do more through deduction
and decrease their reliance on enumeration [4, 6].

Detecting whether the resolvent of two clauses subsumes either operand is easy and
inexpensive. Therefore, checkingon-the-flyfor subsumption [5] can be added with al-
most no penalty to those operations of SAT solvers that are based on resolution. This
detection is used to improve three stages of CirCUs: variable elimination, clause distil-
lation, and conflict analysis.

Simplifying the CNF clauses leads to fast Boolean Constraint Propagation (BCP)
and to earlier detection of conflicts in practice. CirCUs is incremented with preprocess-
ing based on subsumption, variable elimination [1, 9], and distillation [4]. Resolution is
the main operation in preprocessing. Therefore, on-the-flysusbsumption is also applied
to the preprocessors for variable elimination and clause distillation. During eliminating
variables, at each resolution operation, we can check if oneof the operands is subsumed
by the resolvent, like the on-the-fly subsumption check in conflict analysis. A clause can
be simplified by on-the-fly subsumption, regardless of whether the variable is eventu-
ally eliminated. Conflict analysis in clause distillation also performs resolutions steps
as conflict analysis in DPLL. Therefore we can increase efficiency in the distillation
procedure by using on-the-fly simplification.

In addition to conflict learned clauses, this version of CirCUs utilizes the clauses
learned by dominator analysis during the deduction procedure tend to produce smaller
implication graphs and sometimes increase the deductive power of the input CNF for-
mula. In our approach, immediate dominators are computed with an efficient self-
subsumption check, and a learned clause based on dominatorscontains two literals.
This approach can also be extended to clauses with more than two literals by comput-
ing multiple dominators. Our experiments showed that theselearned clauses based on
multiple dominators improve the performance of CirCUs.

Two variablesp and q are equivalent in formulaF if and only if (p → q) and
(q → p) are implicates ofF . Variables in equivalence relation belong to the same

⋆ Supported by SRC contract 2009-TJ-1859.



2 Hyojung Han, HoonSang Jin, Hyondeuk Kim, and Fabio Somenzi

equivalence class. In an equivalence class, a representative is selected and it substitutes
for all other variables in the clause database. This yields fewer variables, and allows the
SAT solver to explore a reduced search space.

A dominator clause tends to help in the identification of equivalent variables. As
many dominator clauses with two-literals are generated, more chances to discover equiv-
alent variables are produced. Thanks to a fact in [3], CirCUsmay detect equivalence re-
lations without explicitly checking two-literal clauses in formulaF during implication.
In addition, the two-literal clauses can be examined periodically to find equivalences
that escape the on-the-fly detection.

CirCUs is written in C. An ANSI C compiler and GNU make are required to build
it. It is supposed to be compiled for 32-bit machines.

References

[1] N. Eén and A. Biere. Effective preprocessing in SAT through variable andclause elimination.
In Eighth International Conference on Theory and Applications of SatisfiabilityTesting (SAT
2005), pages 61–75, St. Andrews, UK, June 2005. Springer-Verlag. LNCS 3569.

[2] E. Goldberg and Y. Novikov. BerkMin: A fast and robust SAT-solver. In Proceedings of the
Conference on Design, Automation and Test in Europe, pages 142–149, Paris, France, Mar.
2002.

[3] H. Han, H. Jin, and F. Somenzi. Learning clauses based on multiple dominators to solve
hard propositional SAT instances, 2010. submitted.

[4] H. Han and F. Somenzi. Alembic: An efficient algorithm for CNF preprocessing. InPro-
ceedings of the Design Automation Conference, pages 582–587, San Diego, CA, June 2007.

[5] H. Han and F. Somenzi. On-the-fly clause improvement. InTwelfth International Conference
on Theory and Applications of Satisfiability Testing (SAT 2009), pages 209–222, Swansea,
UK, June 2009. Springer-Verlag. LNCS 5584.

[6] H. Han, F. Somenzi, and H. Jin. Making deduction more effective inSAT solvers. IEEE
Transactions on COMPUTER-AIDED DESIGN of Integrated Circuits and Systems, 2010. to
appear.

[7] J. P. Marques-Silva and K. A. Sakallah. Grasp—a new search algorithm for satisfiability.
In Proceedings of the International Conference on Computer-Aided Design, pages 220–227,
San Jose, CA, Nov. 1996.

[8] M. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an
efficient SAT solver. InProceedings of the Design Automation Conference, pages 530–535,
Las Vegas, NV, June 2001.

[9] URL: http://http://minisat.se/MiniSat.html.


