
SAT_Power SAT Solver: System Description

Abdorrahim Bahrami, Seyed Rasoul Mousavi, Maryam Farshchian

June 7, 2010

1. Introduction
The SAT_Power is a two-phase SAT solver. The first phase is a simplification phase
which converts a CNF formula to an equivalent but simpler CNF formula, and the second
phase is to call a SAT solver to solve the simplified CNF formula. The emphasis is on the
first phase; any sat solver may be used as for the second phase. This solver uses the latest
available version of Precosat. Actually, the first phase is a preprocessing phase and tries
to simplify the CNF formula using unary and binary clauses of the formula. This phase
has three parts which are described next.

2. Resolution on binary Clauses
The first part of the simplification is to use the resolution rule on binary clauses to extract
unary ones. If two binary clauses exist in the CNF formula in the forms

and , a unary clause in the form can be extracted from them. In this part of
preprocessing, all binary clauses in the given formula are checked to find every pair from
which a unary clause can be extracted.

For speed up, this part is performed at the same time the CNF formula is being read and
prepared into the data structures.

3. Unit-propagation
All the unary clauses are stored in a queue while the CNF formula is being read. This
includes the new unary clauses extracted from the binary ones. Then, a unit-propagation
task is performed to further simplify the formula and also to eliminate all the unary
clauses.

4. Finding Strongly Connected Component
After eliminating all unary and binary clauses in the forms and , an
Implication Graph with all of the remaining binary clauses are constructed. As in 2-SAT,
each strongly-connected component can be used for the purpose of binary equivalence of
some literals. For example, if a strongly-connected component with three nodes , and

 exist in the implication graph, then there will be paths from to and from to
and from to , and vice versa. Recall that in an implication graph, if a literal has a
path to another literal then implies or if then either. So if a
strongly-connected component with three nodes , and exist in an implication graph,

then all these literals will be equivalent. So and can be replaced with , and also

and can be replaced with . Therefore, by finding strongly-connected components,
some variables are eliminated and the CNF formula is simplified and is expected to be
solved in less time than would otherwise be the case.

Having this accomplished, the simplification phase is completed, and a sat solver,
Precosat must be invoked to solve the simplified formula.

