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Abstract

GLUCOSER is a CDCL solver with the ability to
introduce fresh variables during search. We de-
scribe the heuristics that are used to introduce these
variables as well as other modifications that are
necessary to integrate this into the CDCL frame-
work. The techniques here were described in [Au-
demard et al., 2010], while the ideas used in the
CDCL part were described in [Audemard and Si-
mon, 2009]. The solver is available from http://
www.lri.fr/ " simon/glucose.

1 Introduction

The performance of SAT solvers can be improved by two
general methods: either designing better heuristics or using
a more powerful underlying proof system. The operation of
CDCL solvers is naturally understood as a resolution proce-
dure and moreover the CDCL algorithm and resolution p-
simulate each other. Thus, a natural candidate for a more
powerful proof system to serve as a basis for a CDCL-like
solver is extended resolution. Extended resolution allows the
introduction of a fresh variable at any point, which is equiv-
alent to a Boolean expression over the existing variables of
the formula, including previously introduced variables. Un-
like resolution, no superpolynomial lower bounds are known
for extended resolution. On the other hand, no heuristics
have been proposed on choosing appropriate variables to in-
troduce.

In GLUCOSER, we have introduced a simple heuristic that
aims to exploit the power of extended resolution in some
cases, without compromising the efficiency of the CDCL
solver.

As its name implies, GLUCOSER is based on GLUCOSE,
which is in turn based on MINISAT. The heuristics and data
structures that do not pertain to introducing fresh variables
are identical to that solver.

2 Introducing new variables

The main insight we exploit in GLUCOSER is that, when a
solver learns two clauses of the form —I; V a and —I5 V «,
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it may repeat a sequence of resolution steps that is identical
for both clauses, if these steps do not involve the variables [
or [5. We can avoid this repetition by introducing the fresh
variable x <= [; V l5. Despite its simplicity, this scheme
has several key advantages: first, it can be applied to clauses
that are not part of the input formula, but are derived during
search; second, repeated application of this rule can introduce
variables that are equivalent to arbitrarily complex expres-
sions. The former means that the scheme cannot be fooled
by simple “disguising” schemes. In addition, it allows us to
expore the derivation of the proof as a source of information
for which variables to introduce. The latter means that this
scheme can in some cases use the full power of extended res-
olution.

For the sake of simplicity, the above rule is only applied to
successive pairs of clauses which differ only in the asserting
literal. This decision was made both for efficiency but also
based on the intuition that the heuristics of CDCL solvers are
tuned to keep the solver exploring the same search space de-
spite restarts. So, it is likely that pairs of clauses that match
the scheme —I; V «, —l5 V o will be discovered close to each
other. Therefore, it would be sufficient to examine only a
small window of recent clauses to detect many such pairs of
clauses. By pushing this reasoning to its extreme and setting
the window size to 1, we get the heuristic described above.

If n successive learnt clauses have the form —I; V C' (1 <
¢ < n) then we add the rules z; <= [y V [y, but also all
zi <= l; V141 for 2 < i < n. Another alternative may be
toadd z; <= z; V04 instead of z; <= [; VI; 11 but we
found empirically that this performed worse.

Finally, when new clauses are introduced to encode the ex-
pression © <= [ V l3, the solves needs to ensure that
it modifies the assignment so that no unit propagations are
missed. However, because of our restrictions, this case will
never happen. Indeed, consider again two successive learnt
clauses —{; V v and —I5 V . We add the three clauses that
encode z <= [; V l5. Then, because /; and I were UIP
literals, —z V 1 V Iy will be true and z will be propagated
to true according to z V. —l;. Hence, our restriction over de-
tected pairs of clauses also ensures that the desirable property
of learnt clauses that they assert a literal on backtracking still
holds even when introducing new variables and additional
clauses at a given conflict. In particular, we don’t force the
CDCL solver to restart earlier, or to particularly reorder its



decision dependencies.

3 Extended variables in new clauses

As soon as a fresh variable z <= [y V l5 is introduced, we
have to ensure that we replace new clauses in the remaining
proof that match the form ; Vio V3 with 2V 5. This systematic
reduction is important because this allows the new variable z
to be propagated even when the learnt clause /1 VI V 8 would
not have been. For example, if all literals in S are false, the
clause I; V I3 V (3 is not unit, but z V 8 is. Empirically, we
discovered that if we do not perform this reduction step, then
z will almost never occur in conflict analysis, so z will not
be used in the resolution proof that is produced. Note that we
restrict the application of this reduction step to clauses learnt
after we introduce z, mostly for efficiency.

To support this reduction step, we maintain a hash table
of pairs of extended literals, and we probe the hash table
each time a conflict is performed to replace pairs of liter-
als by their extended variable. It has to be noticed that the
use of such a hash table implies a special case were the re-
duction introduces a choice. Suppose we learn the clause
C = 13 VIy VisV B and we have previously introduced
the two new variables z; and zo such that z;, <= [ Vi,
and zo <= I3 Vl3. Then our iterative procedure of re-
duction will have to make a choice between the two clauses
Cy =2z VigVvporCy =11V zyV S. This choice is handled
by prefering to use extended variables with a higher VSIDS
score at the time of the reduction.

4 Variable deletion

In analogy to the way that the learnt clause database is reg-
ularly reduced during search, we delete unused variables to
keep the cost of unit propagation from dominating the run-
time. In particular, we maintain a dependency graph of in-
troduced variables. Whenever the clause database is reduced,
we also remove those leaves of the dependency graph whose
VSIDS score is less than the median among the introduced
variables. A low VSIDS score indicates that the introduced
variables are not used during resolution, thus do not con-
tribute to producing a shorter proof. Additionally, any learned
clauses that contain these variables are also deleted with a lin-
ear scan of the database, which happens anyway during clause
deletion.

5 Conclusion

GLUCOSER is a solver that attempts to use some of the power
of extended resolution in the CDCL framework. The aim in
our design was that introducing fresh variables does not hin-
der the efficiency of a CDCL solver. The resulting solver
exhibits better scaling in some instances that are known to be
hard for resolution, such as the urqg family. The framework
for introducing variables is simple and relatively self con-
tained so can be expected to be easy to use in other solvers.
We expect to gain further improvements by exploiting other
local forms of redundancy in the resolution proofs generated
by CDCL solvers.
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