GLUCOSE 1.1: a solver that predicts learnt clauses quality*.

Gilles Audemard
Univ. Lille-Nord de France
CRIL/CNRS UMRS8188
Lens, F-62307
audemard @cril.fr

Abstract

GLUCOSE is based on a new scoring scheme for
the clause learning mechanism, based on the paper
[Audemard and Simon, 2009]. This short competi-
tion report summarizes the techniques embedded in
the competition 09 version of GLUCOSE. Solver’s
name comes from glue clauses, a particular kind of
clauses that GLUCOSE detects and preserves during
search. The web page for GLUCOSE is
http://www.lri.fr/ simon/glucose.

1 Introduction

Since the breakthrough of Chaff [Moskewicz et al., 20011, a
lot of effort has been made in the design of efficient Boolean
Constraint Propagation (BCP), the heart of all modern SAT
solvers. The global idea is to reach conflicts as soon as possi-
ble, but with no direct guarantees on the new learnt clause
usefulness. Following the successful idea of the Variable
State Independent Decaying Sum (VSIDS) heuristics, which
favours variables that were often — and recently — used in con-
flict analysis, future learnt clause usefulness is supposed to be
related to its activity in recent conflicts analyses.

In this context, detecting what is a good learnt clause in
advance was still considered as a challenge, and from first
importance: deleting useful clauses can be dramatic in prac-
tice. To prevent this, solvers have to let the maximum number
of learnt clauses grow exponentially. On very hard bench-
marks, CDCL solvers hangs-up for memory problems and,
even if they don’t, their greedy learning scheme deteriorates
their heart: BCP performances.

If a lot of effort has been put in designing smart restart poli-
cies, only a few work targetted smart clause database manage-
ment. In [Audemard and Simon, 2009], we show that a very
simple static measure on clauses can dramatically improves
the performances of MINISAT [Eén and Sorensson, 2003], the
solver on which GLUCOSE is based. GLUCOSE is based on
the last plubicly available version of MINISAT.

*supported by ANR UNLOC project n° ANR-08-BLAN-0289-
01

George Katsirelos
Univ. Lille-Nord de France
CRIL/CNRS UMRS8188 LRI/CNRS UMR 8623 / INRIA Saclay
Lens, F-62307
gkatsi@gmail.com

Laurent Simon
Univ. Paris-Sud

Orsay, F-91405
simon @lri.fr

2 Identifying good clauses in advance

During search, each decision is often followed by a large
number of unit propagations. All literals from the same level
are what we call “blocks” of literals in the later. Intuitively,
at the semantic level, there is a chance that they are linked
with each other by direct dependencies. Our idea is that a
good learning schema should add explicit links between in-
dependent blocks of propagated (or decision) literals. If the
solver stays in the same search space, such a clause will prob-
ably help reducing the number of next decision levels in the
remaining computation. Staying in the same search space is
one of the recents behaviors of CDCL solvers, due to phase-
saving [Pipatsrisawat and Darwiche, 2007] and rapid restarts.

Definition 1 (Literals Blocks Distance (LBD)) Given a
clause C, and a partition of its literals into n subsets accord-
ing to the current assignment, s.t. literals are partitioned
w.r.t their decision level. The LBD of C is exactly n.

From a practical point of view, we compute and store the
LBD score of each learnt clause when it is produced. This
measure is thus static, even if update it during search (LBD
score of a clause can be re-computed when the clause is used
in unit-propagation). Intuitively, it is easy to understand the
importance of learnt clauses of LBD 2: they only contain one
variable of the last decision level (they are FUIP), and, later,
this variable will be “glued” with the block of literals propa-
gated above, no matter the size of the clause. We suspect all
those clauses to be very important during search, and we give
them a special name: “Glue Clauses”.

From a theoretical point of view, it is interesting to no-
tice that LBD of FUIP learnt clauses is optimal over all other
possible UIP learning schemas [Jabbour and Sais, 2008]. If
GLUCOSE efficiency in the 2009 competition clearly demon-
strates our scoring accuracy, this theoretical result will cast a
good explanation of the efficiency of First UIP over all other
UIP mechanisms: FUIP efficiency would then be partly ex-
plained by its ability to produce clauses of small LBD (in
addition to its optimality in the size of the backjump [Jabbour
and Sais, 2008]).

Property 1 (Optimality of LBD for FUIP Clauses) Given
a conflict graph, any First UIP asserting clause has the
smallest LBD value over all other UIPs.



3 Agressive clauses deletion

Despite its crucial importance, only a few works focus on
the learnt clause database management. However, keeping
too many clauses may decrease solver BCP performances, but
deleting too many clauses may decrease the overall learning
benefit. Nowadays, the state of the art is to let the clause
database size follow a geometric progression (with a small
common ratio of 1.1 for instance in MINISAT). Each time the
limit is reached, the solver deletes at most half of the clauses,
depending on their score (however, binary clauses are never
deleted).

In glucose 1.0, we chose the following strategy: every
20000 + 500 * z conflicts, we remove at most half of the
learnt clause database where x is the number of times this
action was already performed before. It can be noticed that
this strategy does not take the initial size of the formula into
account (as opposite of most current solvers). Our first hope
was only to demonstrate that even a static measure on clause
usefulness could be as efficient as the past-activity one. How-
ever, our results were far beyond our initial hope.

In this new version, we perform a more agressive clause
reduction. We use the LBD as first criteria and the clause
activity as the second one in case of equality. This is the main
difference between both versions.

4 Other embedded techniques

The GLUCOSE version submitted to the contest differs from
the one used in [Audemard and Simon, 2009] on some very
particular points that we review here.

First of all, we upgraded MINISAT for a special handling
of binary clauses. We also used a phase-caching schema for
variable polarity [Pipatsrisawat and Darwiche, 2007].

4.1 Restarts

One of the best restart strategy in CDCL solver is based on the
Luby series, which exactly means that “we don’t know when
to restart”. Recently, first steps have been done to find a dy-
namic (computed during the search) restart strategy [Biere,
2008; Ryvchin and Strichman, 2008]. Our restart strategy
is based on the decreasing of the number of decisions levels
during search. If the decreasing is stalling, then a restart is
triggered. This is done by a moving average over the last 100
conflicts. If 0.7 times this value is greater than the global av-
erage of the number of decision levels, then a restart is forced
(at least 100 conflicts are needed before any restart). This
strategy should encourage the solver to keep searching at the
right place, and to escape from wrong places.

4.2 Reward good variables

The state-of-the-art VSIDS [Moskewicz et al., 2001] heuris-
tic bumps all variables which participated to the resolution
steps conducting to the assertive clause. This heuristic favors
variables that are often and recently used in conflict analy-
sis. Since we want to help the solver to generate clauses with
small LBD values, we propose to reward a second time vari-
ables that help to obtain such clauses.

We bump once again all variables from the last decision
level, which were used in conflict analysis, but which were

propagated by a clause of small LBD (smaller than the new
learnt clause).

5 Conclusion

GLUCOSE is based on a relatively old version of MINISAT,
which is very well known, and well established. Only a rel-
ativaly small amount of changes has been made in MINISAT:
we tried to reduce the modifications as much as possible in
order to identify what are the crucial techniques to add to a
2006 winning code to win the UNSAT category of the 2009
SAT competition. A lot of improvements can be awaited by
more up-to-date datastructures (like the use of blocked liter-
als).

References

[Audemard and Simon, 2009] G. Audemard and L. Simon.
Predicting learnt clauses quality in modern sat solvers. In
proceedings of IJCAI, 2009.

[Biere, 2008] A. Biere. Adaptive restart strategies for con-
flict driven sat solvers. In proceedings of SAT, pages 28—
33, 2008.

[Eén and Soérensson, 2003] N. Eén and N. Soérensson. An ex-
tensible SAT-solver. In proceedings of SAT, pages 502—
518, 2003.

[Jabbour and Sais, 2008] S. Jabbour and L. Sais. personnal
communication, February 2008.

[Moskewicz ef al., 2001] M. Moskewicz, C. Madigan,
Y. Zhao, L. Zhang, and S. Malik. Chaff : Engineering
an efficient SAT solver. In proceedings of DAC, pages
530-535, 2001.

[Pipatsrisawat and Darwiche, 2007] K. Pipatsrisawat and
A. Darwiche. A lightweight component caching scheme
for satisfiability solvers. In proceedings of SAT, pages
294-299, 2007.

[Ryvchin and Strichman, 2008] V. Ryvchin and O. Strich-
man. Local restarts. In proceedings of SAT, pages 271—
276, 2008.



