
The SAT Solver kw

by Johan Alfredsson, Oepir Consulting

johan@oepir.com

Introduction

kw is a propositional satisfiability solver. The aim when creating it has been to build a flexible
SAT framework that can easily be extended in several directions. Therefore, the architecture is
extremely modular and in the trade-off between speed and generality, the latter has almost
always been favoured. At the heart of the kw solution process is a strategy selection mechanism
[1] that time-slices different strategies to simplify and solve the problem instances. kw supports
incremental problem solving and proof generation.

Strategies

kw is parametrized over which strategies to use to try to solve a SAT instance. Currently, the
following strategies are available:

DPLL. The implementation features most modern extensions like 1-UIP conflict generation
[2], conflict clause minimization [3], watched literals [4], efficient VSIDS heuristics and
rapid restarts [5].

Intersection. By branching on both a literal and its complement and recording the similari-
ties between these propagation results, information about literal values can be propa-
gated which simplifies the problem instance. Further details exist in [6].

Strongly connected components. Finding the strongly connected components of the
binary implication graph, equivalent literal information is extracted. By selecting repre-
sentatives for equivalence classes of literals, the clause database may be simplified after a
representative literals normalization. For further information, see [7].

Variable elimination. By performing all possible resolutions and adding those to the
clause database, a variable can be eliminated from the problem instance. To avoid exten-
sive problem growth, only variables which do not generate a big increase in memory
usage are eliminated [8].

Subsumption. A clause for which there is another shorter clause in the clause database
containing only literals from the first clause is redundant. This strategy finds and
removes such redundant clauses [9]. It also finds similar redundancies after one resolution
step.

Automatic. This is a meta-strategy that select the next strategy to run from a set of
allowed strategies.

Circuit support

kw supports solving circuit SAT problems formulated in the aiger [10] format. Currently, only
a simple translation from aiger to CNF is done using a naive Tseitin transformation [11] after
which the regular CNF instance solving takes over.

1



Future work

kw still lacks many bells and whistles. The primary road ahead consists of adding more strate-
gies to complement the existing ones. Two more strategies are in development and yet three
more are planned. Furthermore, the idea is to improve the capabilities of solving circuit prob-
lems. There is also on-going work to streamline the kw API to suit particular higher-level user
applications.

References

[1] Johan Alfredsson – The SAT Solver Oepir, in The SAT Competition 2004: Solver descrip-

tions

[2] Joao Marques-Silva and Karem Sakallah – Conflict Analysis in Search Algorithms for Propo-
sitional Satisfiability, in Proceedings of the International Conference on Tools with Artificial

Intelligence, 1996

[3] Niklas Eén and Niklas Sörensson – MiniSat – A SAT Solver with Conflict-Clause Minimiza-
tion, in Proceedings of the International Conference on Theory and Applications of Satisfiability

Testing, 2005

[4] Matthew Moskewicz, Conor Madigan, Lintao Zhang and Sharad Malik – Chaff: Engineering
an Efficient SAT Solver, in Proceedings of the Design Automation Conference, 2001

[5] Jinbo Huang – The effects of restarts on the efficiency of clause learning, in Proceedings of

the International Joint Conference on Artificial Intelligence, 2007

[6] Daniel Le Berre – Exploiting the real power of unit propagation lookahead, in Proceedings of

the Workshop on Theory and Applications of Satisfiability Testing, 2001

[7] Ronen Brafman – A Simplifier for Propositional Formulas with many Binary Clauses, in Pro-

ceedings of the International Joint Conferences on Artificial Intelligence, 2000

[8] Sathiamoorthy Subbarayan and Dhiraj K Pradhan – NiVER: Non Increasing Variable Elimi-
nation Resolution for preprocessing SAT instances, in Proceedings of the International Confer-

ence on Theory and Applications of Satisfiability Testing, 2004

[9] Niklas Eén and Armin Biere – Effective Preprocessing in SAT through Variable and Clause
Elimination, in Proceedings of the International Conference on Theory and Applications of Satis-

fiability Testing, 2005

[10] Armin Biere – The AIGER And-Inverter Graph (AIG) Format Version 20070427, 2007

[11] G. S. Tseitin – Om the complexity of derivation in propositional calculus, in Constructive

Mathematics and Mathematical Logic, Part II, 1968

2


