SATzilla2008: an Automatic Algorithm Portfolio for SAT

Lin Xu, Frank Hutter, Holger H. Hoos and Kevin Leyton-Brown
Computer Science Dept., University of British Columbia
Vancouver, BC, Canada

{xulin730, hutter, hoos, kevinlb}@cs.ubc.ca

1 Introduction

Empirical studies often observe that the performance of
algorithms across problem domains can be quite uncorre-
lated. When this occurs, it seems practical to investigate
the use of algorithm portfolios that draw on the strengths
of multiple algorithms. SATzilla is such an algorithm
portfolio for SAT problems; it was first deployed in the
2004 SAT competition [13], and recently an updated ver-
sion, SATzilla2007, won a number of prizes in the 2007
SAT competition [23], including the gold medals for the
SAT+UNSAT categories of both the random and hand-
made categories. SATzilla is based on empirical hard-
ness models [10, 14], learned predictors that estimate
each algorithm’s runtime on a given SAT instance.

In SATzilla2007, we integrated new research on em-
pirical hardness models: regression based on partly cen-
sored data (i.e. including runs that time out); probabilis-
tic prediction of instance satisfiability; and hierarchical
models (separate models for satisfiable and unsatisfiable
instances, and probabilistic combination of the two for
prediction); see [23] and [24] for a description of these
features).

The new features in SATzilla2008 are as follows:

e Automatic selection of pre-solvers
e Prediction of performance score instead of runtime

e Randomized solver subset selection for a large set
of candidate solvers

Much of the improvements aims at automating the
process of portfolio building. As a result, after obtaining
candidate solvers and measuring their runtimes for
our training and validation instances, the construction
of our SATzilla2008 portfolio took very little time.
SATzilla2008’s metholodology can be outlined as
follows:

Offline, as part of algorithm development:

1. Identify a target distribution of problem instances.

2. Select a set of candidate solvers that are known or
expected to perform well on at least a subset of the
target distribution.

3. Use domain knowledge to identify features that
characterize problem instances. To be usable effec-
tively for automated algorithm selection, these fea-

tures must be related to instance hardness and rela-
tively cheap to compute.

4. On a training set of problem instances, compute
these features and run each algorithm to determine
its running times. We use the term performance
score to refer to the quantity we aim to minimize,
e.g. the runtime of the algorithm.

5. Automatically determine the best combination of
pre-solvers and their runtimes; pre-solvers will later
be run for a short amount of time before features are
computed (step 1 below), in order to ensure good
performance on very easy instances and to allow the
predictive models to focus exclusively on harder in-
stances.

6. Using a validation data set, determine which solver
achieves the best performance for all instances that
are not solved by the pre-solvers and on which the
feature computation times out. We refer to this
solver as the backup solver.

7. Construct a predictive model for each algorithm in
the portfolio, which predicts the algorithm’s perfor-
mance score based on instance features.

8. Automatically choose the best subset of solvers to
use in the final portfolio.

Then, online, to solve a given problem instance, the
following steps are performed:

1. Run the pre-solvers in the pre-determined order for
up to their pre-determined fixed cutoff times.

2. Compute feature values. If feature computation can-
not be completed for some reason (error or timeout),
select the backup solver identified in step 6 above.

3. Otherwise, predict each algorithm’s performance
score using the predictive models from step 7 above.

4. Run the algorithm predicted to be the best. If a
solver fails to complete its run (e.g., it crashes), run
the algorithm predicted to be next-best.

2 New Technologies

SATzilla2008 implements a number of improvements
over SATzilla2007, detailed in a recently submitted ar-
ticle [22].

Automatic selection of pre-solvers. While for
SATzilla2007, we selected pre-solvers manually, this
step is now largely automated. Our method assumes that

we can commit to a fixed maximum of pre-solvers, as
well as to a small number of possible cutoff times for
them. For all possible combinations of pre-solvers and
runtimes, we then evaluate SATzilla2008’s performance
on the validation data by performing the above steps 6
(determining backup solver), 7 (building predictive mod-
els) and 8 (solver subset selection), and choose the com-
bination with the best performance.

Prediction of performance score instead of run-
time. Although previous versions of SATzilla always
predicted runtime, our framework is general enough to
deal with a variety of cost functions. In a competi-
tion context, we aim to maximize the score our portfo-
lio achieves in the competition. For the SAT Race, this
score rewards the number of instances solved, as well as
the speed for solving them. We thus computed the partial
score for every solver and instance in the training set, and
learned predictive models mapping instance characteris-
tics to scores.

Local search for solver subset selection. Because
our runtime predictions are not perfect, dropping a solver
from the portfolio entirely can increase overall perfor-
mance. However, the number of possible solver sub-
sets is exponential in the number of component solvers,
so picking the best subset may be costly; also keep in
mind that we repeat this step for a possibly large num-
ber of pre-solver combinations. Thus, when the number
of component solvers is large, we perform a randomized
local search to select a good solver subset.

In [22], we present two further technologies: the in-
clusion of local search solvers as component solvers,
and more general hierarchical hardness models that al-
low using the combination of multiple specialized mod-
els. Here, we allowed local search solvers as compo-
nent solvers, but they were not selected by the automatic
solver subset selection. We only used hierarchical hard-
ness models that combine models for satisfiable and un-
satisfiable instances; separate models could be build for
subclasses of industrial instances, but due to a lack of
training data we chose not to do this.

3 The Resulting Algorithm Portfolio

In order to approximate the target instance distribution of
industrial SAT instances, we selected all instances from
previous SAT competitions in the industrial category, as
well as all instances from the SAT Race 2006. 905 in-
stances were left after excluding all instances not solved
by any solver we considered.

SATzilla’s performance
its component solvers.

depends crucially on
We considered a num-
ber of state-of-the-art SAT solvers from previ-
ous competitions as candidate solvers, in par-
ticular the fifteen complete solvers Eureka[l2],
Kcnfs06[5], March_d104[8], Minisat 2.0[6],

Rsat 1.03[17], vallst[20], Zchaff_Rand[l1],
Kenfs04[4], TTS[19], Picosat5.35[1], MXC[2],
March_ks[7], TinisatElite[9], Minisat07[18],
Rsat 2.0. We also considered the four local search
solvers Ranov[15], Ag2wsatO[3], Ag2wsat+[21],
and Gnovelty+[16].

For each training instance we ran each algorithm and
recorded its runtime. The timeout for each algorithm run
was set to at least 20 minutes. We computed 44 char-
acteristic features for each instance (similar to the set
we used in [24] except four variable graph fea-
tures. These comprised 29 basic features, 7 features from
DPLL probes, and 8 features from local search probes.
All features were normalized to mean zero and standard
deviation one on the training set. The time required for
computing basic features was instance-dependent with a
timeout of 60 seconds. Two seconds were allocated to
computing the local search features for each instance,
and one second for DPLL probes. The average complete
feature computation time on our training data was 6 sec-
onds (no feature time-out on our reference machine).

For pre-solving, we committed in advance to using
a maximum of two pre-solvers. We allowed a number
of possible cutoff times, namely 2, 5, 10, and 30 CPU
seconds, as well as 0 seconds (i.e., the pre-solver is not
run at all) and considered all orders in which to run the
three pre-solvers. The automatically chosen combination
is to first run MinisatO07 for two seconds, and then
run Picosat5. 35 for ten seconds. Together, this pre-
solver combination already solved 40.1% of our training
instances. Since there is no feature time-out in training
phase, the automatically chosen backup solver was the
winner-take-all solver Picosat5.35.

Next, we learned predictive models for performance
score. As in SATzilla2007, we used simple linear regres-
sion with quadratic basis functions and forward selection.
We selected a model using up to 8 basis functions in or-
der not to overfit on the fairly sparse training data.

In order to choose a solver subset out of our 19 can-
didate solvers, we performed local search as described
in Section 2. This led us to select the following compo-
nent solvers: Eureka, Minisat 2.0, Rsat 1.03,
Picosat5.35,MXC, TinisatElite, Rsat 2.0.

In summary, when SATzilla2008 is asked to solve an
instance, it first runs Minisat 07 for two seconds, then
runs Picosat5. 35 for ten seconds, then computes fea-
tures (on average in 6 seconds), feeds the computed fea-
tures into each of the predictive models to get predic-
tions of performance scores (a matter of milliseconds)
and then runs the best predicted solver until timeout. If
feature computation times out, a default solver is used. If
a solver crashes, the next best predicted one is run using
the time that remains.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

(10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

A. Biere. Picosat version 535. Solver description, SAT competi-
tion 2007, 2007.

D.R. Bregman and D. G. Mitchell. The SAT solver MXC, version
0.5. Solver description, SAT competition 2007, 2007.

W. Wei C. M. Li and H. Zhang. Combining adaptive noise and
promising decreasing variables in local search for SAT. Solver
description, SAT competition 2007, 2007.

G. Dequen and O. Dubois. kenfs. Solver description, SAT com-
petition 2007, 2007.

0. Dubois and G. Dequen. A backbone-search heuristic for ef-
ficient solving of hard 3-SAT formulae. In Proc. of IJCAI-01,
pages 248-253, 2001.

N. Eén and N. Sorensson. Minisat v2.0 (beta). Solver description,
SAT Race 2006, 2006.

M. Heule and H. v. Maaren. march_ks. Solver description, SAT
competition 2007, 2007.

M. Heule, J. Zwieten, M. Dufour, and H. Maaren. March_eq: im-
plementing additional reasoning into an efficient lookahead SAT
solver. pages 345-359, 2004.

J. Huang. TINISAT in SAT competition 2007. Solver description,
SAT competition 2007, 2007.

K. Leyton-Brown, E. Nudelman, and Y. Shoham. Learning the
empirical hardness of optimization problems: The case of combi-
natorial auctions. In Proc. of CP-02, pages 556-572, 2002.

Y. S. Mahajan, Z. Fu, and S. Malik. Zchaff2004: an efficient SAT
solver. pages 360-375, 2005.

A. Nadel, M. Gordon, A. Palti, and Z. Hanna. Eureka-2006 SAT
solver. Solver description, SAT Race 2006, 2006.

E. Nudelman, A. Devkar, Y. Shoham, K. Leyton-Brown, and
H. Hoos. SATzilla: An algorithm portfolio for SAT, 2004.

E. Nudelman, K. Leyton-Brown, H. H. Hoos, A. Devkar, and
Y. Shoham. Understanding random SAT: Beyond the clauses-
to-variables ratio. In Proc. of CP-04, pages 438-452, 2004.

D. N. Pham and Anbulagan. Resolution enhanced SLS solver:
R+AdaptNovelty+. Solver description, SAT competition 2007,
2007.

D. N. Pham and C. Gretton. gNovelty+. Solver description, SAT
competition 2007, 2007.

K. Pipatsrisawat and A. Darwiche. Rsat 1.03: SAT solver de-
scription. Technical Report D-152, Automated Reasoning Group,
UCLA, 2006.

N. Sorensson and N. Eén. Minisat2007.
http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/,
2007.

I. Spence. Ternary tree solver (tts-4-0). Solver description, SAT
competition 2007, 2007.

D. Vallstrom. Vallst documentation.
http://vallst.satcompetition.org/index.html, 2005.

W. Wei, C. M. Li, and H. Zhang. Deterministic and random se-
lection of variables in local search for SAT. Solver description,
SAT competition 2007, 2007.

Lin Xu, Frank Hutter, Holger Hoos, and Kevin Leyton-Brown.
SATzilla: Portfolio-based algorithm selection for SAT. Submitted
to JAIR, December 2007.

Lin Xu, Frank Hutter, Holger Hoos, and Kevin Leyton-Brown.
Satzilla2007: a new & improved algorithm portfolio for SAT.
Solver description, SAT competition 2007, 2004.

Lin Xu, Frank Hutter, Holger Hoos, and Kevin Leyton-Brown.
Satzilla-07: The design and analysis of an algorithm portfolio for
SAT. In Proc. of CP-07, pages 712-727, 2007.

