
MiraXT ’08 – Solver Description

Tobias Schubert Matthew Lewis Bernd Becker
Institute of Computer Science, Albert-Ludwigs-University of Freiburg, Germany

{schubert, lewis, becker}@informatik.uni-freiburg.de

Abstract

This paper briefly describes MiraXT, a multi-threaded
SAT solver that was designed to take advantage of cur-
rent and future shared memory multiprocessor systems. The
experimental results in [2] show that already in single-
threaded mode, MiraXT compares well to other state-of-
the-art solvers on a wide range of industrial problems. In
threaded mode, it provides cutting edge performance, as
speedup is obtained on both satisfiable and unsatisfiable in-
stances. The paper highlights some of the design and im-
plementation details that allow multiple threads to run and
cooperate efficiently.

1. MiraXT

1.1. Overview

MiraXT is a significantly enhanced re-implementation of
MIRA [1] that is able to run with multiple threads. It con-
tains MIRA’s Early Conflict Detection BCPas well asIm-
plication Queue Sorting. As the decision strategy, a modi-
fied VSIDS algorithm is used, in which all scores over 1024
are concatenated so that a bucket sort can be used to sort the
list in linear time with respect to the number of variables.
This allows us to sort the list more frequently keeping it up-
to-date, and makes the decision heuristic less greedy. Fur-
thermore, a preprocessing unit has been incorporated into
MiraXT, that is similar to the one integrated in MiniSat2.
Lastly, our approach was implemented in C++ using POSIX
threads. The overall design of MiraXT is given in Figure 1.

1.2. Shared Clause Database

MiraXT uses one master clause database, the so called
Shared Clause Database, that stores pointers to the origi-
nal problem clauses, plus pointers to all the conflict clauses
generated by each thread. Each clause is only present once
in memory, and is shared between all threads. In order to in-
sure coherency within the database, a lock must be acquired
before a thread inserts a pointer to its newly generated con-
flict clause. As soon as the pointer is inserted and the

database clause counter is incremented the lock is released.
All clauses, once generated, are read-only, so that sharing
can be done without locks. These steps are important as we
want to reduce the amount of locks needed by the solver,
and remove any lock contention and wait times that might
result from the remaining locks. Also, each thread has one
lock associated with it that is used when the thread requests
a new clause from the shared clause database. This lock is
used to increment its current database position pointer. This
pointer keeps track of which clauses the thread has already
looked at, and those that can still be added.

Clause deletion is also an important issue. In MiraXT,
each thread deletes clauses using an algorithm in which in-
active clauses are easier to delete than active ones. To facil-
itate clause deletion efficiently in our approach, each thread
has one Boolean variable associated with it for every clause.
Also, each clause consists of an array of literals with the first
few spots in the array being reserved. These spots specify
the clause length and its unique database reference number.
When a thread deletes its references to a clause, it must set
its Boolean variable for that clause using the clauses refer-
ence number. Because the Boolean variable for the clause
is specific for that thread, no global lock is required when
deleting clauses.

Once a thread has deleted all the clauses it wants to
delete, it will ask the shared clause database to see if
a global clause deletion procedure should be run, as the
threads only delete their references to clauses, and not the
actual clauses themselves. In MiraXT, a simple test based
on how many threads there are, and how many deletion pro-
cesses have been run, is used to decide if such an operation
is required. If the shared clause database needs cleaning, the
thread grabs a lock and proceeds to delete clauses that are no
longer used by any thread, relinquishing the lock when it is
finished. This lock is used to insure that no two threads run
a clause deletion operation on the shared clause database at
the same time.

Using the fine grained lock system described above,
practically all lock contention issues were removed, and in
testing we saw no signs of even light lock contention.



Complete Model
(in case of SAT)

SAT Solver

SAT Solver

Master
SAT Solver

SAT Solver

Control

Object

Thread 0

Thread 1

Thread 2

Thread 3

Shared Clause Database

Preprocessed CNF Formula

SAT Solving Unit

Partial Model (in case of SAT)

Initial CNF Formula

Preprocessing Unit

Preprocessing

Model Extension

Figure 1. Overall design of MiraXT

1.3. Watched Literals Reference List

In most solvers, to keep track of the watched literals, the
original clause is modified in some way (e.g., by using the
first two literals in the clause). This is not possible in Mi-
raXT, because clauses are read-only. So, each thread creates
a second data structure called theWatched Literals Refer-
ence List(WLRL). For each clause, this structure contains
two watched literals and a up to two additional literals, that
are checked first by the BCP procedure when searching for
a new watched literal. The WLRL basically allows each
thread in MiraXT to have a condensed reference or copy of
every clause. In experiments on a selection of BMC prob-
lems we observed, that 84% of the clauses can be directly
evaluated with only the WLRL. This means the original
clauses are not needed 84% of the time! Also, on many
problems, clauses with 3 literals or less are fairly common,
meaning the entire clause can be stored here. In any case,
this allows MiraXT to better utilize each CPU’s cache mem-
ory.

1.4. Multithreaded Solver Control

MiraXT contains no controlling master process unlike
many other parallel solvers. Instead, a master control object
(MCO) allows the threads to communicate with each other.
All communication is done in a passive way, such that the
MCO will not interfere with the threads. It will only store
messages and suspend threads which ask for it to do so. The
solver threads poll the MCO occasionally to check for mes-
sages, such as idle threads waiting for a new subproblem.

1.5. Multithreaded Conflict-Driven Learning

The conflict analysis procedure in MiraXT is based on
zChaff’s 1UIP scheme. However, a separate clause addi-

tion procedure was implemented. In MiraXT, the conflict
analysis procedure will add a clause pointer to the shared
clause database. Then the clause addition procedure will be
run, asking the shared clause database for all new clauses
the particular thread hasn’t looked at so far; this includes
clauses generated by other threads and the thread’s newly
generated conflict clause. It will then process these clauses,
deciding which clauses should be added. Currently, all con-
flict clauses, undefined clauses, or really short ones (10 lit-
erals or less), are added. The clause addition procedure will
assign watched literals, search for implications, and per-
form conflict driven backtracking as needed. Both the con-
flict analysis procedure and the clause addition procedure
can signal that the current subproblem is unsatisfiable.

2. SAT Race 2008

With respect to last year’s version, we have slightly
changed the decision heuristic and the clause deletion
mechanism. Additionally, special BCP routines for binary
and ternary clauses as well as for clauses containing exactly
4 literals have been integrated.

References

[1] M. Lewis, T. Schubert, and B. Becker. Speedup Techniques
Utilized in Modern SAT Solvers – An Analysis in the MIRA
Environment. In8th International Conference on Theory and
Applications of Satisfiability Testing, 2005.

[2] M. Lewis, T. Schubert, and B. Becker. Multithreaded SAT
Solving. In12th Asia and South Pacific Design Automation
Conference, 2007.


