
PicoSAT Versions 535

Armin Biere

April 30, 2007

Abstract

Our SAT solver PicoSAT is an attempt to opti-
mize low-level performance of BooleForce, which
shares many of its key features with MiniSAT
version 1.14. In this short note we describe the
features of PicoSAT version 535, which is the
version that was submitted to the SAT 2007
SAT Solver Competition.

1 Restarts and Phases

PicoSAT uses an aggressive nested restart
scheme, inspired by but simpler than [2], in
combination with a more sophisticated strategy
for picking the phase of decision variables. The
nested restart scheme triggers fast restarts with
a high frequency. The period of fast restarts
is increased by 10% after every restart until
the end of the outer long period with a slow
frequency. Then the long period of the outer
restart interval is also increased by 10% and the
fast restart interval is reset to its initial period
of 100 conflicts. In addition, to avoid revisiting
the same search space over and over again, the
last learned clause before a restart is fixed and
never deleted. Other learned clauses are garbage
collected in the reduction phase as usual based
on their activity [1].

The decision heuristic for the phase is as in
RSAT [5]. It simply assigns the decision vari-
able to the same value it was assigned before.
Initially, as long a variable has never been as-
signed, PicoSAT prefers the phase with more
occurrences among the original clauses and falls
back to assign the variable to false as a tie
breaker.

2 Proofs

PicoSAT’s predecessor BooleForce has already
been able to keep the resolution proof in mem-

ory, which greatly improves performance in ap-
plications, where clausal or variable cores or a
proof trace have to be produced. This is up to
an order of magnitude more efficient than writ-
ing the trace to disk and reading it back as it
is necessary for proof logging versions of ZChaff
and MiniSAT.

Since proofs of SAT solvers can grow very
large, we employed two techniques to reduce
space usage. First, clauses that become satisfied
and never were used in deriving a conflict can
safely be deleted. In principle, one could even
go further and use reference counters for learned
clauses. Clauses which are not referenced any-
more can also be deleted. Another reduction is
gained by sorting the clause indices of the an-
tecedents of a learned clause, and then compress
them by just storing the deltas, followed by a
simple byte stream encoding. In this encoding
the most significant bit of a byte flags the end
of a delta, as in the binary AIGER format. In
practice we obtain compression ratios close to
one byte per antecedent.

3 Occurrence Lists

PicoSAT can be compiled to either use a stack
based or list based occurrence list implementa-
tion. Our list based implementation of occur-
rence lists was developped independently but
shares many features with the implementation
of occurrence lists of the original Chaff solver
[3]. Note that zChaff, for which source code be-
came available earlier, and which inspired many
state-of-the-art solvers uses a stack based imple-
mentation of occurrence lists.

PicoSAT can also use a compact representa-
tion of binary clauses as in [4]. The performance
gain with our list based implementation is in the
same order as the speed-up that can be obtained
by treating binary clauses as in [4]. A detailed
comparison of the run-time of various versions
of PicoSAT will be reported elsewhere.

1



SAT Competition 2007 - solver description

In the SAT Race 2006 the new version 535
of PicoSAT, as submitted to the SAT 2007 SAT
Solver Competition, would have been the fastest
solver. PicoSAT 535 is able to solve 78 instances
while the winner of the SAT Race, MiniSAT ver-
sion 2.0, only solved 73. PicoSAT 535 does not
use any preprocessor yet. We expect preprocess-
ing to improve performance even further.

4 Determinism

Considerable effort has been invested to make
PicoSAT independent of platform and compiler.
PicoSAT has its own simple floating point code
for handling activity scores, an important inno-
vation in MiniSAT 1.14. MiniSAT may produce
different search trees on different platforms or
with different compilers, because it relies on na-
tive floating point numbers.

Producing deterministic behavior when
switching between stacks and lists was not hard
to achieve. Initially, disabling or enabling spe-
cial treatment of binary clauses, produced quite
different search trees. The first necessary ad-
justment was to base the reduction schedule
for garbage collection of learned clauses on the
number of large clauses alone and ignore bi-
nary clauses. Delaying for instance reduction by
one conflict alone can already change the search
tree dramatically. We also had to make sure
that during the analysis phase in backtracking
the implication graph is traversed in exactly the
same order.

5 Profiling

Most time is spent in BCP. But still a non neg-
ligible portion of the run time is spent in dis-
connecting satisfied or less active clauses.

Originally we implemented the same algo-
rithm as in MiniSAT for disconnecting watched
clauses which became satisfied or garbage in a
reduction process. This algorithm is a linear
search through the whole stack respectively list
of clauses for a certain literal and removes in-
dividual clauses. It obviously has a quadratic
accumulated worst case complexity in the num-
ber of clauses to be disconnected.

An improvement would be to use doubly
linked lists. However, this only works for our
list based implementation, and would require
two more link fields in the clause header. The

alternative, which we eventually implemented,
simply delays disconnecting individual clauses
as soon a clause becomes garbage. After all
garbage clauses are marked, the collection phase
is started, which goes through all occurrence
lists respectively stacks of all literals only once
and removes references to garbage clauses.

Still, as our experiments showed, flushing
references to garbage clauses in the stack based
implementation is much faster than traversing
lists in our new implementation. We believe
that this effect is due to the fact that in the list
based implementation touching larger headers of
clauses with two link fields is less cache friendly
than just traversing the stack and skipping ref-
erences to clauses marked garbage. In the latter
case only one word of each clause needs to be
read while in the former at least three, e.g. one
containing the garbage flag, at least one literal
to determine the correct link field, and the link.

6 Conclusion

The performance of PicoSAT not only ben-
efits from high level features, such as rapid
restarts and more intelligent phase assignment,
but also from carefully engineered low-level data
structures and algorithms, including a real list
based occurrence list implementation and spe-
cial treatment of binary clauses. In an extended
version of this short note we will give more ex-
perimental evidence to these claims.

References

[1] E. Goldberg and Y. Novikov. Berk-
Min: a Fast and Robust Sat-Solver. In
Proc. DATE’02.

[2] M. Luby, A. Sinclair, and D. Zuckerman.
Optimal speedup of Las Vegas algorithms.
Information Processing Letters, 47, 1993.

[3] M. W. Moskewicz, C. F. Madigan, Y. Zhao,
L. Zhang, and S. Malik. Chaff: Engineering
an efficient SAT solver. In Proc. DAC’01.

[4] S. Pilarski and G. Hu. Speeding up SAT for
EDA. In Proc. DATE’02.

[5] T. Pipatsrisawat and A. Darwiche. SAT
solver description: RSat. SAT Race’06.

2


