A non-CNF DIMACS style

Fahiem Bacchus'* and Toby Walsh2**

1 Department of Computer Science, University of Toronto,
Toronto, Ontario, Canada
f bacchus@s. t or ont 0. edu
2 Cork Constraint Computation Center,
University College Cork, Ireland.
tw@c. ucc.ie

1 Introduction

In 1992, as part of the Second DIMACS Implementation Challenge on “NP Hard Prob-
lems: Maximum Clique, Graph Coloring, and Satisfiability”, Michael Trick proposed
a simple format for specifying clausal propositional satisfiability problems. More re-
cently this been extended to quantified Boolean formulae, again in clausal form. There
was also a DIMACS format for non-clausal formulae but this was restricted to a lim-
ited number of connectives and has not been widely used. The ISCAS’85 benchmark
circuits also provided a netlist format for non-clausal formulae but this has never been
formally documented, and is again restricted to a limited number of connectives.

To encourage development of non-clausal solvers, and to support a non-clausal com-
petition at the annual SAT conference, we propose here an extension of the DIMACS
style to arbitrary propositional formulae. We suspect that part of the success of the CNF
DIMACS style is that it is essentially just a sequence of numbers, so it is relatively easy
to write a parser for it. The extension proposed here also follows this principle.

We have also choosen to limit some of the allowed flexibility of the original DI-
MACS format. In particular, the original format allowed a clause specification to run
over multiple lines, and a new clause to start on the same line on which the previous
clause ended. A number of SAT solvers in fact never supported this flexibility, and
the recent SAT competitions have also not allowed this flexibility. In line with this we
restrict the use of line breaks in the specified format.

2 Problem Semantics

A Non-CNF file specifies a single output boolean circuit with some number of inputs.
The circuit is satisfiable if and only if there is some setting of the input variables under
which the circuit’s output is true. The circuit is specified as some collection of intercon-
necting gates which eventually feed into a single root output. Below we describe the
format for specifying the circuit.

* Supported by Natural Science and Engineering Research Council of Canada.
** Supported by Science Foundation Ireland.

3

Header

3.1 Comments

The header contains comment lines and the problem line. A comment line begins with
a lower case “c”. The rest of the line is then ignored.

¢ This is an exanple of a coment |ine

All comment lines must come at the start of the file. No comment line can appear

after the problem line appears.

3.2 Problem Line

The problem line is of the form:

p noncnf VARS

VARS is the largest | O(see below) number that appears in the circuit specification.

4

Body

Each line in the body describes one of the gates within the propositional formula. Each
line has the form:

GATE #_PARAVETERS PARAMETERL ... PARAMETERK IC0 ... IOn O

4.1

GATE: is the type of gate. This is a positive non-zero integer. The format speci-
fication contains a number of predefined gates types, reserves some numbers for
new gate types to enter the specification, and leaves some numbers available for
application specific (i.e., non-portable) use.

#_PARANMETERS: this is positive non-zero integer. It specifies the number of pa-
rameters to follow. If #_ PARAMETERS is -1 this means that there are no parame-
ters (zero is reserved to terminate the gate). When #_PARAMETERS is -1 the next
numbers will specify the | Cs.

PARANMETERI : the parameters, if any, are specified by integers. Their interpretation
is specific to the gate type.

I Oi: positive and negative non-zero integers specifying the inputs and outputs to the
gate. Their interpretation is specific to the gate type, and may be position dependent.
A negative integer means that the input/output is negated.

0: each gate specification is terminated by zero, “0” and a line break. Line breaks
may not appear before the gate specification is complete.

Root

The root output of the circuit is taken to be the largest I O number that appears in the
circuit.

4.2 Gate types

As noted above each gate is specified by a positive non-zero integer type. There are a
number of predefined gate types as well as room to add new types. Application specific
implementations are also free to define their own non-portable gate types. Of course
such non-portable types will probably not be supported by other solvers.

The following connectives (gate types) are currently supported?:

GATE Name #_PARAMETERS| PARAVETERS|| Cs Comment
1 FALSE -1 none | Q0 = output always false
2 TRUE -1 none | Q0 = output always true
3 NOT -1 none | Q0 = output, unary negation, | Q0 = =l O1
| OL = input
4 AND -1 none | Q0 = output n-ary conjunction, | Q0 =10OLA... Al On
| OL...n = inputs
5 NAND -1 none |l Q0 = output n-ary NAND, | @ = =(IOL A ... A1 On)
| OL...n = inputs
6 OR -1 none | Q0 = output n-ary disjunction, | @ =101V ...VIOn
| OL...n = inputs
7 NOR -1 none (I Q0 = output n-ary NOR, | @ =—=(101 V... VI On)
| OL...n = inputs
8 XOR -1 none | Q0 = output n-ary XOR, 10 =101 & ... D1 On
| OL...n = inputs
9 XNOR -1 none |l Q0 = output n-ary XNOR, | Q0 =—=(101 & ... ®1 On)
| OL...n = inputs
10 | MPLI ES -1 none | Q0 = output, binary implication, 1 Q0 ==l Ol VI Q2
| OL = input,
| @ = input
11 | FF -1 none | Q0 = output n-ary equivalence,
| OL...n = inputs IA=10...<10n
12 | FTHENELSE -1 none | Q0 = output, ternary if-then-else,
I OL..3 = input;j I=(10—=>1R)A (-0 -1 B)
13 ATLEAST 1 k I Q0 = output, at least k inputs are true,
| OL..n = input 1Q0=3" 10>k
14 ATMOST 1 k I Q0 = output, at most & inputs are true,
| OL..n = input l0=>3" 10i<k
15 COUNT 1 k | Q0 = output, exactly k inputs are true,
| OL..n = input l0=>" 10i=k
> 10000 Gates numbered from 10000 can be used for
application specific gates. The numbers 16—+
9999 are reserved for future expansion of the
standard.

! Please email the authors if you wish to see other connectives supported.

5 Valid Benchmarks

A valid benchmark is one that is subject to two additional conditions.
1. No | Onumber should be specified as an output of more than one gate.
2. The root output (the highest | O number specified) should not be specified as an

input to any other gate.

Non-CNF solvers utilizing this format can assume that they their input is a valid
benchmark. It is up to the benchmark provider to ensure that the benchmark is valid.

