
 1

Testing satisfiability of CNF formulas by computing a stable set of points

Eugene Goldberg
Cadence Berkeley Labs (USA)

egold@cadence.com

Abstract. We show that a conjunctive normal form (CNF) formula F is unsatisfiable iff there is
a set of points of the Boolean space that is stable with respect to F. So testing the satisfiability of
a CNF formula reduces to looking for a stable set of points (SSP). We give a simple algorithm
for constructing a set of points that is stable with respect to a given set of clauses. Constructing
an SSP can be viewed as a “natural” way of search space traversal. This naturalness of search
space examination allows one to make use of the regularity of CNF formulas to be checked for
satisfiability. We illustrate this point by showing that if a CNF formula is symmetric with respect
to a group of permutations, it is very easy to make use of this symmetry when constructing an
SSP. As an example, we show that the unsatisfiability of pigeon-hole CNF formulas can be
proven by examining only a linear size set of points that can be constructed in quadratic time.

1. Introduction
A common belief is that there is no polynomial time algorithm for the satisfiability

problem. Nevertheless, many classes of “real-life” CNF formulas have structural
properties that reduce (or may potentially reduce) the complexity of checking these CNF
formulas for satisfiability from exponential to polynomial. However, the existing
algorithms are not very good at taking into account structural prope rties of CNF
formulas. One of the reasons is that currently there is no “natural” way of traversing
search space. For example, in the DPLL procedure [4], that is the basis of many
algorithms used in practice, s earch is organized as a binary tree. In reality, the search tree
is used only to impose a linear order on the points of the Boolean space to avoid visiting
the same point twice. However, this order may be in conflict with “natural” relationships
between points of the Boolean space that are imposed by the CNF formula to be checked
for satisfiability (for example, if this formula has some symmetries).

In this paper, we introduce the notion of a stable set of points (SSP). We show that a
CNF formula F is unsatisfiable if and only if there is a set of points of the Boolean space
that is stable with respect to F. If F is satisfiable then any subset of points of the Boolean
space is unstable, and an assignment satisfying F will be found in the process of SSP
construction. We describe a simple algorithm for constructing an SSP.

An important fact is that, generally speaking, a set of points that is stable with respect
to a CNF formula F depends only on the clauses F consists of. So the process of
constructing an SSP can be viewed as a “natural” way of traversing search space when
checking F for satisfiability. For instance, if F has symmetries, they can be easily taken
into account when constructing an SSP. To illustrate this point, we consider the class of
CNF formulas that are symmetric with respect to a group of permutations. We show that
in this case for proving the unsatisfiability of a CNF formula it is sufficient to construct a
set of points that is stable modulo symmetry. In particular, as it is shown in the paper for
pigeon-hole CNF formulas there is a linear size set of points that is stable modulo
symmetry. So the unsatisfiability of pigeon-hole CNF formulas can be proven by
examining only a set of points of linear size.

 2

The notion of an SSP is the development of the idea of 1-neighborhood exploration
introduced in [5]. From the practical point of view the notion of an SSP (and, more
generally, the notion of 1-neighborhood exploration) is important because it gives a new
criterion for algorithm termination. Namely, once it is proven that the examined part of
the Boolean space is an SSP (or contains an SSP) one can claim that the CNF under test
is unsatisfiable.

The rest of the paper is organized as follows. In Section 2 we introduce the notion of
an SSP. In Section 3 we show the relationship between SSPs and sets of reachable points.
In Section 4 we describe a simple algorithm for constructing an SSP. In Section 5 we
show that our algorithm for constructing SSPs can be easily modified to take into account
formula’s symmetry. In Section 6 we apply the modified algorithm to a class of highly
symmetric formulas called pigeon-hole CNF formulas. In Section 7 we give a summary
of results and directions for future research. In Appendix A we describe background on
testing the satisfiability of symmetric CNF formulas. In appendix B proofs of the
propositions are given. In appendix C some experimental results are shown.

2. Stable set of points
In this section, we introduce the notion of an SSP. Let F be a CNF formula of n

variables x1 ,...,xn. Denote by B the set {0,1} of values taken by a Boolean variable.
Denote by Bn the set of points the Boolean space specified by variables x1,...,xn. A point
of Bn is an assignment of values to all the n variables.
Definition 1. A disjunction of literals (also called a clause) C is called satisfied by a
value assignment (point) p if C(p)=1. Otherwise, clause C is called falsified by p.
Definition 2. Let F be a CNF formula. The satisfiability problem is to find a value
assignment (point) satisfying all the clauses of F. This assignment is called a satisfying
assignment.
Definition 3. Let p be a point of the Boolean space falsifying a clause C. The 1-
neighborhood of point p with respect to clause C (written Nbhd(p ,C)) is the set of points
that are at Hamming distance 1 from p and that satisfy C.
Example 1. Let C=x1∨¬ x3∨x6 be a clause specified in the Boolean space of 6 variables
x1,…,x6. (Symbol ‘¬’ means negation.) Let p=(x1=0,x2 =1,x3=1,x4 =0,x5=1,x6 =0) be a
point falsifying C. Then Nbhd(p,C) consists of the following three points:
p1=(x1=1,x2 =1,x3=1,x4 =0,x5=1,x6 =0), p2=(x1=0,x2=1,x3=0 ,x4=0,x5=1,x6=0), p3=(x1 =0,x2=1,
x3=1,x4=0,x5=1,x6=1). Points p1,p2,p3 are obtained from p by flipping the value of
variables x1,x3 ,x6 respectively i.e. the variables whose literals are in C.

Denote by Z(F) the set of points at which F = 0. If F is unsatisfiable, Z(F) = Bn.
Definition 4. Let F be a CNF formula and P be a subset of Z(F). Mapping g of P to F is
called a transport function if, for any p ∈ P, clause g(p) ∈ F is falsified by p. In other
words, a transport function g:P→F is meant to assign each point p∈P a clause that is
falsified by p. We call mapping P→F a transport function because, as it is shown in
section 3, such a mapping allows one to introduce some kind of “movement” of points in
the Boolean space.
Definition 5. Let P be a nonempty subset of Z(F) and F be a CNF formula. Set P is
called stable with respect to a CNF formula F and transport function g: P→F, if ∀ p ∈ P,
Nbhd(p ,g(p)) ⊆ P.

 3

Remark. Henceforth, if we say that a set of points P is stable with respect to a CNF
formula F without mentioning a transport function, we mean that there is a mapping
g:P→F such that P is stable with respect to F and g.
Example 2. Consider an unsatisfiable CNF formula F consisting of 7 clauses: C1=x1∨x2 ,
C2= ¬ x2∨x3, C3= ¬ x3∨x4 , C4= ¬ x4∨x1 , C5= ¬ x1∨x5 , C6= ¬ x5∨x6 , C7= ¬ x6∨ ¬ x1.
Clauses of F are composed of literals of 6 variables: x1,…,x6. The following 14 points
form an SSP P: p1=000000, p2=010000, p3=011000, p4=011100, p5=111100, p6=111110,
p7=111111, p8=011111, p9 =011011, p10=010011, p11=000011, p12=100011, p13=100010,
p14=100000. (Values of variables are given in the order variables are numbered. For
example, p4 consists of assignments x1=0, x2=1, x3=1, x4=1, x5=0, x6=0.) Set P is stable
with respect to the transport function g specified as: g(p1)=C1, g(p2)=C2, g(p3)=C3,
g(p4)=C4, g(p5)=C5, g(p6)=C6, g(p7)=C7, g(p8)=C4, g(p9)=C3, g(p10)=C2, g(p11)=C1,
g(p12)=C7, g(p13)=C6, g(p14)=C5. It is not hard to see that g indeed is a transport function
i.e. for any point pi of P it is true that C(pi)=0 where C=g(pi). Besides, every point pi of P
satisfies the condition Nbhd(p ,g(p)) ⊆ P of Definition 5. Consider, for example, point
p10=010011. The value of g(p10) is C2, C2 = ¬ x2∨x3 and the value of Nbhd (p10,C2) is
{p11=000011, p9 =011011}, the latter being a subset of P.
Proposition 1. If there is a set of points that is stable with respect to a CNF formula F, then
F is unsatisfiable.
Proofs of all the propositions are given in Appendix B.
Proposition 2. Let F be an unsatisfiable CNF formula of n variables. Then set Z(F) is
stable with respect to F and any transport function Z(F)→ F.
Remark. From Proposition 1 and Proposition 2 it follows that a CNF formula F is
unsatisfiable if and only if there is a set of points stable with respect to F.

3. SSPs as sets of reachable points
In this section, we show the relationship between SSPs and sets of reachable points.

Definition 6. Let F be a CNF formula and g: Z(F)→F be a transport function. A
sequence of points p1,...,pk is called a path from point p1 to point pk in set P with
transport function g , if points p1,...,pk-1 are in P and pi ∈ Nbhd(pi-1,g(pi-1)), 2 ≤ i ≤ k.
(Note that the last point of the path, i.e. pk , does not have to be in P.) We will assume
that no point repeats twice (or more) in a path.
Example 3. Consider the CNF formula and transport function of Example 2. Let P be the
set of points specified in Example 2. Sequence of points p1,p14,p13,p12 form a path from
p1 to p12. Indeed, it is not hard to check that Nbhd(p1,g(p1))={p2,p14},
Nbhd(p14,g(p14))={p13,p1}, Nbhd(p13,g(p13))={p14,p12}, Nbhd(p12,g(p12))={p13,p11}. So
each point p’ of the path (except the starting point i.e. p1) is contained in the
Nbhd(p”,g(p”)) where p” is the preceding point.
Definition 7. Let F be a CNF formula. Point p” is called reachable from point p’ by
means of transport function g:Z(F)→F if there is a path from p’ to p” with transport
function g. Denote by Reachable(p ,g) the set that consists of point p and all the points
that are reachable from p by means of transport function g.
Proposition 3. Let F be a satisfiable CNF formula, p be a point of Z(F), and s be the closest
to p (in Hamming distance) satisfying assignment. Let g:Z(F)→F be a transport function.

 4

Then in Z(F) there is a path from p to s with transport function g i.e. solution s is
reachable from p.
Proposition 4. Let F be a CNF formula, g:Z(F)→F be a transport function, and p be a
point from Z(F). If P=Reachable(p ,g) does not contain a satisfying assignment, then P is
stable with respect to F and g and so F is unsatisfiable.

4. Testing satisfiability of CNF formulas by SSP construction
In this section, we describe a simple algorithm for constructing an SSP. It is based on

Proposition 3 and Proposition 4. Let F be a CNF formula to be checked for satisfiability.
The idea is to pick a point p of the Boolean space and construct set Reachable(p ,g).
According to Proposition 4 if Reachable(p,g) does not contain a solution, it is stable and
so F is unsatisfiable. On the other hand, if F is satisfiable, then according to Proposition 3
set Reachable(p ,g) must contain a solution. Since transport function g:Z(F)→F is not
known beforehand, it is built on the fly. In the description of the algorithm given below,
set Reachable (p ,g) is broken down into two parts: Boundary and Body. The Boundary
consists of those points of the current set Reachable(p ,g) whose 1-neighborhood has not
been explored yet. At each step of the algorithm a point p’ of the Boundary is extracted
and a clause C falsified by p' is assigned as the value of g(p’). Then the set Nbhd(p’,C) is
generated and its points (minus those that are already in the Body or Boundary) are added
to the Boundary. This goes on until the Boundary is empty (F is unsatisfiable) or a
satisfying assignment is found (F is satisfiable).
1. Generate a starting point p. Boundary={p}. Body=∅ , g=∅.
2. If the Boundary is empty, then the Body is an SSP and F is unsatisfiable. The

algorithm terminates.
3. Pick a point p’ ∈ Boundary. Boundary=Boundary \ {p’}.
4. Find a set M of clauses that are falsified by point p’. If M=∅ , then CNF formula F is

satisfiable and p’ is a satisfying assignment The algorithm terminates.
5. Pick a clause C from M. Take C as the value of g(p’). Generate Nbhd(p’,C).

Boundary=Boundary ∪ (Nbhd(p’,C) \ Body). Body = Body ∪ {p’}.
6. Go to step 2.

Interestingly, the described algorithm can be viewed as an extension of
Papadimitriou’s algorithm [10] and Walksat [12] to the case of unsatisfiable CNF
formulas. Papadimitriou's algorithm and Walksat can be applied only to satisfiable CNF
formulas since they do not store visited points of the Boolean space. The remarkable fact
is that the number of points that one has to explore to prove the unsatisfiability of a CNF
formula can be very small. For instance, in Example 2 an SSP of a CNF formula of 6
variables consists only of 14 points while the Boolean space of 6 variables consists of 64
points. In is not hard to show that for a subclass of the class of 2-CNF formulas (a clause
of a 2-CNF formula contains at most 2 literals) there is always an SSP of linear size. This
subclass consists of formulas analogous to the one described in Example 2. However,
we have not proved (or disproved) this claim for the whole class of 2-CNF formulas yet.

From the practical point of view the described algorithm has two substantial flaws.
First, an SSP is constructed point-by-point while computing an SSP in larger chunks of
points (clustering “similar” points of the Boolean space) should be more efficient.
Second, the algorithm looks for a set of points that is stable with respect to the initial set

 5

of clauses. On the other hand, if an algorithm is allowed to resolve clauses of the initial
CNF, it may find a much smaller set of points that is stable with respect to a set of
resolvents. Nevertheless, for symmetric CNF formulas (considered in Sections 5 and 6)
even point-by-point SSP computation can be efficient.

5. Testing satisfiability of symmetric CNF formulas by SSP
construction

In this section we show how the algorithm of Section 4 should be modified to take into
account formula’s symmetry.
Definition 8. Let X={x1 ,....,xn} be a set of Boolean variables. Permutation π defined on
set X is a bijective mapping of X onto itself.

Let F={C1,...,Ck} be a CNF formula. Let p=(x1,...,xn) be a point of Bn. Denote by π(p)
point (π(x1),...,π(xn)). Denote by π(Ci) the clause that is obtained from Ci ∈ F by
replacing variables x1,..,xn with variables π(x1),...,π(xn) respectively. Denote by π(F) the
CNF formula obtained from F by replacing each clause Ci with π(Ci).
Definition 9. CNF formula F is called symmetric with respect to permutation π if each
clause π(Ci) of π(F) is identical to a clause Ck ∈ F.

The set of the permutations, with respect to which a CNF formula is symmetric, forms
a group. Henceforth, we will denote this group by G. The fact that a permutation π is an
element of G will be denoted by π∈G. Denote by 1 the identity element of G.
Definition 10. Points p and p’ are called symmetric if there is a permutation π ∈ G such
that p’=π(p) or p=π(p’).
Remark. The binary relation introduced by Definition 10 is an equivalence relation. This
relation partitions the Boolean space Bn into equivalence classes. Each class consists of a
set of pairwise symmetric points. It is not hard to show that if G is a group of permutation
of a CNF formula F, then for any pair p ,p’ of symmetric points F(p)=F(p’).
Definition 11. Let F be a CNF formula and P be a subset of Z(F). Set P is called stable
modulo symmetry with respect to F and transport function g: P→F if for each p ∈ P
every point p’ ∈ Nbhd(p ,g(p)) is either in P or there is a point p” of P that is symmetric
to p’.
Proposition 5. Let Bn be the Boolean space specified by variables X={x1,....,xn}. Let p be a
point of Bn, C be a clause falsified by p, and q ∈ Nbhd(p ,C) be obtained from p by
flipping the value of variable xi. Let π be a permutation of variables from X, p’ be equal
to π(p), C’ be equal to π(C), and q’ ∈ Nbhd(p’,C’) be obtained from p’ by flipping the
value of variable π(xi). Then q’=π(q). In other words, for each point q of Nbhd(p ,C)
there is a point q’ of Nbhd(p’,C’) such that q’=π(q).
Proposition 6. Let F be a CNF formula, P be a subset of Z(F), and g:P→F be a transport
function. If P is stable modulo symmetry with respect to F and g , then CNF formula F is
unsatisfiable.
Proposition 7. Let P⊆ Bn be a set of points that is stable with respect to a CNF formula F
and transport function g: P→F. Let P’ be a subset of P such that for each point p of P
that is not in P’ there is a point p’ ∈ P’ symmetric to p. Then P’ is stable with respect to
F and g modulo symmetry.

 6

Definition 12. Let F be a CNF formula, G be its group of permutations, p be a point of
Z(F), and g: P→F be a transport function. Set Reachable(p,g ,G) is called the set of
points reachable from p modulo symmetry if a) it includes point p; b) each point p’ that
is reachable from p by means of transport function g is either in Reachable (p ,g,G) or
there exists point p” ∈ Reachable(p ,g,G) that is symmetric to p’.
Proposition 8. Let F be a CNF formula, G be its group of permutations, p be a point of
Z(F), and g: P→F be a transport function. If set P=Reachable(p ,g ,G) does not contain a
satisfying assignment, then it is stable modulo symmetry with respect to F and g.
Proposition 9. Let F be a CNF formula, G be its group of permutations, g:Z(F)→F be a
transport function, and p be a point of Z(F). CNF formula F is satisfiable if and only if
Reachable(p ,g ,G) contains a satisfying assignment.

Let F be a CNF formula and G be its group of permutations. According to Proposition
9 when testing the satisfiability of F it is sufficient to construct set Reachable(p ,g ,G).
This set can be built by the algorithm of Section 4 in which step 5 is modified in the
following way. Before adding a point p” from Nbhd(p’,C) \ Body to the Boundary it is
checked if there is a point of Boundary ∪ Body that is symmetric to p”. If such a point
exists, then p” is not added to the Boundary.

6. Computing SSPs of pigeon-hole CNF formulas
In this section, we apply the theory of Section 5 to a class of symmetric CNF formulas

called pigeon-hole formulas. Pigeon-hole CNF formulas, by means of propositional
logic, describe the fact that n objects (pigeons) cannot be placed in m holes so that no
two objects occupy the same hole if n > m. Pigeon-hole formulas was the first class of
CNF formulas for which resolution was proven to be exponential [6].
Definition 13. Denote by ph(i,k) the Boolean variable whose value indicates if i-th
pigeon is in k-th hole (ph(i,k)=1 means that the pigeon is in the hole). Pigeon-hole CNF
formula (written PH(n,m)) consists of the following two sets of clauses (denote them by
H1(n,m) and H2(n,m)). Set H1(n,m) consists of n clauses ph(i,1)∨ph(i,2)∨ ... ∨ ph(i,m),
i=1,...,n , i-th clause encoding the fact that i-th pigeon has to be in at least one hole. Set
H2(n,m) consists of m∗n∗(n-1)/2 clauses ¬ph(i,k)∨¬ph(j,k), i < j, 1 ≤i,j ≤ n, 1 < k < m.
Clause ¬ph(i,k)∨¬ph(j,k) encodes the fact that i-th and j-th pigeons i≠j cannot be placed
in the k-th hole together.

CNF formula PH(n ,m) has n∗m variables. To “visualize” points of the Boolean space
Bn∗m we will assume that the variables of PH(n,m) are represented by entries of a matrix
M of n rows and m columns. Entry M(i,j) of the matrix corresponds to variable ph(i,j).
Then each point of the Boolean space can be viewed as a matrix n×m whose entries take
values 0 or 1. Denote by M(p) the matrix representation of point p. Denote by S(n,m) the
following set of points of the Boolean space. S(n ,m) consists of two subsets of points
denoted S1(n,m) and S2(n ,m). A point p is included in subset S1(n ,m) if and only if each
row and column of M(p) contains at most one 1-entry. A point p is included in subset
S2(n,m) if and only if a) matrix M(p) has exactly one column containing two 1-entries
and the rest of the columns have at most one 1-entry; b) M(p) contains at most 1-entry per
row.

It is not hard to see that for a point p from S1(n ,m) there is a clause of H1(n ,m) that p
does not satisfy. The latter is true because, since n > m and every column has at most one

 7

1-entry, there is at least one row (say i-th row) of M(p) consisting only of 0-entries. Then
p does not satisfy clause ph(i,1)∨ph(i,2)∨ ... ∨ ph(i,m) of H1(n,m). For each point p from
S2(n,m) there is exactly one clause from H2(n ,m) that p does not satisfy (and maybe some
clauses of H1(n ,m)). Suppose for example, that in M(p) entries M(i,k) and M(j,k) are
equal to 1 (i.e. k-th column is the one containing two 1-entries). Then the only clause of
H2(n,m) point p does not satisfy is ¬ph(i,k)∨¬ph(j ,k).
Definition 14. Denote by g the following transport function mapping S(n,m) to PH(n ,m).
If p ∈ S1(n,m) then g(p) is equal to a clause from H1(n,m) that p does not satisfy (no
matter which). If p ∈ S2(n,m) then g(p) is equal to the clause from H2(n,m) that p does
not satisfy.
Proposition 10. Set of points S(n ,m) = S1(n,m) ∪ S2(n ,m) is stable with respect to the set of
clauses H1(n,m) ∪ H2(n,m) and transport function g specified above.
Proposition 11. Let p be the point in which every variable is assigned value 0. Let g: Bn∗m
→ PH(n ,m) be a transport function. Then set Reachable(p ,g) constructed by the
algorithm described in Section 4 is a subset of S(n ,m) if the following heuristic is used
when constructing an SSP. If a new point p to be added to the Boundary falsifies clauses
from both H1(n ,m) and H2(n,m), then a clause of H2(n,m) is selected as the value of g(p).

The group of permutations of CNF formula PH(n,m) (denote it by G(PH(n,m))) is the
direct product of the group of all the permutations of n pigeons and the group of all the
permutations of m holes.
Definition 15. Let p be a point of the Boolean space Bn∗m in which PH(n,m) is specified.
Vector (c1,…,cm) where cj , 1 ≤ j ≤ m is the number of 1-entries in the j-th column of
M(p), is called the signature of p. Signature v’ of p’ and v” of p” are said to be identical
modulo permutation if v’ can be transformed to v” by a permutation.
Proposition 12. Let p and p’ be points of Bn∗m

 such that their signatures are are not
identical modulo permutation. Then there is no permutation π∈G(PH(n ,m))) such that
p’=π(p) i.e. points p and p’ are not symmetric.
Proposition 13. Let p and p’ be points of S(n ,m) such that their signatures are identical
modulo symmetry. Then points p and p’ are symmetric
Remark. From Proposition 12 and Proposition 13 it follows that points p and p’ of
S(n,m) are symmetric with respect to G(PH(n ,m)) iff the signature v’ of p’ and signature
v” of p” are identical modulo permutation.
Proposition 14. Set S(n ,m) contains 2∗ m+1 equivalence classes.
Proposition 15. There is a set of points that is stable with respect to PH(n,m) and transport
function g (specified by Definition 14) modulo symmetry, and that consists of 2∗m+1
points.
Proposition 16. Let p∈S1(n,m) be the point in which all variables are assigned 0. Let
Reachable(p ,g ,G(PH(n,m))) be the SSP built by the algorithm described in the end of
Section 5 where the construction of the transport function is guided by the heuristic
described in Proposition 11. Then set Reachable(p ,g,G(PH(n ,m))) contains no more than
2∗ m+1 points. The time taken by the algorithm for constructing such a set is O(m2∗f)
where f is the complexity of checking if two points of S(n,m) are symmetric.

 8

7. Conclusions
We show that satisfiability testing of a CNF formula reduces to constructing a stable

set of points (SSP). An SSP of a CNF formula can be viewed as an inherent
characteristic of this formula. We give a simple procedure for constructing an SSP. As a
practical application we show that the proposed procedure of SSP construction can be
easily modified to take into account symmetry (with respect to variable permutation) of
CNF formulas. In particular, we consider a class of symmetric CNF formulas called
pigeon-hole formulas. We show that the proposed algorithm can prove their
unsatisfiability in quadratic time and there is a stable (modulo symmetry) set of points of
linear size.

An interesting direction for future research is to relate the size of SSPs of a CNF
formula to the complexity of proving its unsatisfiability. In particular, it is important to
identify classes of CNF formulas having SSPs of polynomial size. A natural candidate is
the class of 2-CNF formulas. On the practical side, it is important to develop methods
that a) are able to construct an SSP in “chunks” clustering points that are “similar”; b)
can use resolution to reduce the size of SSPs by producing “better” sets of clauses.

References
1. C.A.Brown,L.Finkelstein,P.W.Purdom. Backtrack searching in the presence of

symmetry. In “Applied algebra, algebraic algorithms and error correcting codes”.
Sixth international conference, P. 99-110. Springer -Verlag,1988.

2. V. Chvatal, E. Szmeredi. Many hard examples for resolution. J. of the ACM,vol. 35,
No 4, pp.759-568.

3. M. Crawford, M. Ginsberg, E. Luks, A. Roy. Symmetry breaking predicates for
search problems. Fifth Internationa l Conference on Principles of Knowledge
Representation and Reasoning (KR'96).

4. M.Davis, G.Logemann, D.Loveland. A Machine program for theorem proving.
Communications of the ACM. -1962. -V.5. -P.394-397.

5. E.Goldberg. Proving unsatisfiability of CNFs locally. Proceedings of LICS 2001
Workshop on Theory and Applications of Satisfiability Testing.

6. A.Haken. The intractability of resolution. Theor. Comput. Sci. 39 (1985),297-308.
7. B.Krishnamurthy. Short proofs for tricky formulas. Acta Informatica 22 (1985) 253-

275.
8. D.Mitchell, B.Selman ,and H.J.Levesque. Hard and easy distributions of SAT

problems. Proceedings AAAI-92, San Jose,CA, 459-465.
9. M.Moskewicz,C.Madigan,Y.Zhao,L.Zhang,S.Malik. Chaff: Engineering an Efficient

SAT Solver. Proceedings of DAC-2001.
10. C.Papadimitriou. On selecting a satisfying truth assignment. Proceedings of FOC-91.
11. A.Roy. Symmetry breaking and fault tolerance in Boolean satisfiability. PhD thesis.

Downloadable from http://www.cs.uoregon.edu/~aroy/
12. B.Selman,H.Kautz,B.Cohen. Noise strategies for improving local search.

Proceedings of AAAI-94.
13. A.Urquhart. The symmetry rule in propositional logic. Discrete Applied Mathematics

96-97(1999):177-193,1999.
14. H.Wong-Toi. Private communication.

 9

Appendix A . Some background on testing satisfiability of symmetric CNF
formulas

In this appendix, we give some background on testing the satisfiability of symmetric
CNF formulas. Methods for simplifying satisfiability check for symmetric formulas
have received substantial attention in the past. In [7] it was shown that if the resolution
system is enhanced by a “symmetry rule” then the complexity of proofs for some classes
of formulas reduces from exponential to polynomial. This extra rule allows to “shortcut”
the deduction of implicates that are symmetric to ones deduced before. In [13] it was
shown that in the resolution system with the symmetry rule, the satisfiability of pigeon-
hole formulas can be refuted with a proof of length (3n+1)n/2 where n is the number of
holes. Unfortunately, the resolution system (whether it has the symmetry rule or not) is
non-deterministic and so these results are not very helpful in designing deterministic
algorithms.

Practical (and hence deterministic) algorithms for testing satisfiability of symmetric
formulas were considered in [1,3,11]. In [1] a backtracking algorithm with some
machinery for prunning symmetric branches was introduced. The problem of such an
approach is that the ability to prune symmetric branches is obtained at the expense of
losing the freedom of search tree examination. So if a new scheme of backtracking is
found in the future, a new algorithm would have to be designed to take into account
symmetries of the CNF under test.

To solve the problem, in [3] it was suggested to add to the CNF formula F to be tested
for satisfiability a set G of “symmetry breaking” clauses . The idea is to find such a set G
of clauses that only one point of each symmetry class satisfies all the clauses of G. This
way search in symmetric portions of the Boolean space is pruned earlier than without
adding clauses of G (if a clause of G is falsified before any clause of F). The
generation of symmetry-breaking clauses G is done by a separate procedure performed
before actual satisfiability testing. So this procedure (used as a preprocessor) can be run
in combination with any SAT-solver to be developed in the future.

One of the flaws of the approach is that the problem of generating a full set of
symmetry breaking clauses is NP-hard [3]. Moreover, for some groups the number of all
clauses that have to be generated to break all symmetris of the group is exponential [11].
This leads to the following problem. Since often one cannot break all the symmetries, it is
reasonable to try to break only symmetries whose elimination would symplify
satisfiability testing the most. (For example, if at the satisfiability testing step a search
tree is explored, we would like symmetry breaking clauses to help prune largest subtrees
of the search tree.) However, since symmetry processing and satisfiability testing are
performed separately, at the symmetry processing step we do not know which
symmetries should be broken. (In other words, when generating symmetry breaking
clauses we do not have information about which subtrees of the future search tree are
going to be large.)

This suggests that even though incorporating symmetry processing into the current
backtracking algorithms is difficult, satisfiability testing and symmetry processing should
be tightly linked. One more reason for such a conclusion is that non-symmetric (or
having little symmetry) “real-life” CNF formulas may have highly symmetric
subformulas (i.e. CNF formulas obtained from the initial CNF after making a number of
value assignments). Such a kind of symmetry can be used only in the process of

 10

satisfiability testing. So, instead of separating symmetry processing and satisfiability
testing steps it makes sense to try to find a search space traversal scheme that is more
amenable to symmetry processing than backtracking. We believe that bulding an SSP
could be such a scheme. The point is that an SSP of a CNF formula F is an inherent
characteristic of F. So if F has some symmetries, an SSP has these symmetries as well,
which makes it easy to use them during satisfiability testing.

Appendix B: Proofs of the propositions

Proof of Proposition 1. Assume the contrary. Let P be a set of points that is stable with
respect to F and a transpor t function g, and p* be a satisfying assignment i.e. F(p*) = 1.
It is not hard to see that p* ∉ P because each point p ∈ P is assigned a clause C=g(p)
such that C(p)=0 and so F(p)=0. Let p be a point of P that is the closest to p* in
Hamming distance. Denote by C the clause that is assigned to p by transport function g
i.e. C=g(p). Denote by Y the set of variables values of which are different in p and p*.

Let us show that C cannot have literals of variables of Y. Assume the contrary, i.e.
that C contains a literal of x ∈ Y. Then, since P is stable with respect to F and g , it has to
contain the point p’ which is obtained from p by flipping the value of x. But then p’ ∈ P
is closer to p* than p. So we have a contradiction. Since C(p)=0 and C does not contain
literals of variables whose value are different in p and p* we have to conclude that
C(p*)=0. This means that p* is not a solution and so we have a contradiction.

Proof of Proposition 2. Since F is unsatisfiable, then Z(F)=Bn. Then, given a transport
function g:Z(F) → F, condition Nbhd(p ,g(p)) ⊆ Bn holds for every point p ∈ Bn.

Proof of Proposition 3. Denote by Y the set of variables whose values are different in p
and s. Since F(p)=0, then p ∈ Z(F) and function g assigns a clause C to p where C(p)=0.
All literals of C are set to 0 by p. On the other hand, since s is a solution then at least one
literal of C is set by s to 1. Then C has at least one literal of a variable from Y. Flipping
the value of this variable of Y in p we obtain a point p’ which is closer to point s by 1 (in
Hamming distance). Point p’ is reachable from p by means of transport function g. If
|Y|>1, then p’ cannot be a satisfying assignment since, by our assumption, s is the closest
to p satisfying assignment. Going on in this manner we reach satisfying assignment s in
|Y| steps.

Proof of Proposition 4. Assume the contrary, i.e. that Reachable(p,g) is not stable. Then
there exists a point p’ of Reachable(p,g) (and so reachable from p) such that a point p”
of Nbhd(p’,g(p’)) is not in Reachable(p,g). Since p” is reachable from p’ it is also
reachable from p. We have a contradiction.

Proof of Proposition 5. The value of variable xk , k≠i in q is the same as in p. Besides, the
value of variable π(xk) in q’ is the same as in p’ (q’ is obtained from p’ by changing
the value of variable π(xi) and since k≠i then π(xk) ≠π(xi)). Since p’=π(p) then the value
of xk in q is the same as the value of variable π(xk) in q’. On the other hand, the value of
variable xi in q is obtained by negation of the value of xi in p. The value of variable

 11

π(xi) in q’ is obtained by negation of the value of π(xi) in p’. Hence the values of
variable xi in q and variable π(xi) in q’ are the same. So q’=π(q).

Proof of Proposition 6. The idea of the proof was suggested to the author by Howard
Wong-Toi [14].

 Denote by K(p) the set of all points that are symmetric to point p i.e. that are in the
same equivalence class. Denote by K(P) the union of the sets K(p), p∈P. Extend the
domain of transport function g from P to K(P) in the following way. Suppose p’ is a
point that is in K(P) but not in P. Hence there is a point p ∈ P that is symmetric to p’
and so p’=π(p), π∈G. Then we assign C’=π(C), C=g(p) as the value of g at p’. If there
is more than one point of P that is symmetric to p’, we pick any of them.

To prove that F is unsatisfiable we show that K(P) is stable with respect to F and g:
K(P) → F. Let p’ be a point of K(P). The idea is to show that any point q’ from
Nbhd(p’,g(p’)) is symmetric to a point of P and so q’ ∈ K(P). This would mean that
Nbhd(p',g(p')) ⊆ K(P) and so K(P) is stable.

According to the definition of K(P) there is a point p of P that is symmetric to p’ and
so p’=π(p). Then from Proposition 5 it follows that for any point q of Nbhd(p,g(p)) there
is a point q' ∈ Nbhd(p',g(p')) such that q’=π(q). On the other hand, since P is stable
modulo symmetry then for any point q of Nbhd(p,g(p)) there is a point q” ∈ P
symmetric to q and so q=π*(q”), π*∈ G (π* may be equal to 1 ∈ G if q is in P). Then q’
= π(π*(q”)). Hence q' is symmetric to q” ∈ P and so q’ ∈ K(P).

Proof of Proposition 7. Let p’ be a point of P’. Let q’ be a point of Nbhd (p’,g(p’)).
Point p’ is in P because P’ ⊆ P. Since P is a stable set then q’ ∈ P. From the definition
of set P’ it follows that if q’ is not in P’ then there is a point r’ ∈ P’ that is symmetric to
q’. So each point q’ of Nbhd(p’,g(p’)) is either in P’ or there is a point of P’ that is
symmetric to q’.

Proof of Proposition 8. Assume the contrary, i.e. that P is not stable. Then there is a
point p’ ∈ P (reachable from p modulo symmetry) such that a point p” of
Nbhd(p’,g(p’)) is not in P and P does not contain a point symmetric to p”. On the other
hand, p” is reachable from p’ and so it is reachable from p modulo symmetry. We have
a contradiction.

Proof of Proposition 9. If part. If Reachable(p ,g,G) contains a satisfying assignment
then F is obviously satisfiable.
Only if part. Assume the contrary i.e. that F is satisfiable and Reachable(p ,g ,G) does
not contain a satisfying assignment. From Proposition 8 it follows that Reachable(p ,g ,G)
is stable modulo symmetry with respect to F and g. Then from Proposition 6 it follows
that F is unsatisfiable. We have a contradiction.

Proof of Proposition 10. Let p be a point from S(n ,m). Consider the following two
alternatives.
1) p ∈ S1(n,m) . Then the matrix representation M(p) of p has at least one row (say i-th
row) consisting only of 0-entries. Point p falsifies at least one clause from H1(n,m). A
falsified clause of H1(n,m) (say, clause C= ph(i,1)∨ph(i,2)∨ ... ∨ ph(i,m)) is assigned to p

 12

by transport function g. Let us show that Nbhd(p ,C) ⊆ S1(n,m) ∪ S2(n,m). Denote by p’
the point obtained from p by flipping the value of variable ph(i, j). By definition, no
column of M(p) contains more than one 1-entry. So we have two alternatives. First, if j-
th column of M(p) contains a 1-entry then the matrix representation M(p’) of p’ contains
exactly one column (namely, j-th column) that contains two 1-entries. Besides, all rows
of M(p’) still contain at most one 1-entry. (We have added a 1-entry to the i-th row that
did not contain any 1-entries in M(p).) Then p’ ∈ S2(n ,m). Second, if j-th column of M(p)
does not contain a 1-entry, then M(p’) does not contain columns having two 1-entries
and so p’ ∈ S1(n ,m).
2) p ∈ S2(n,m). Then the matrix representation M(p) of p has exactly one column (say,
j-th column) that has two 1-entries. Let us assume that j-th column M(p) has 1-entries in
i-th and k-th rows. Point p falsifies exactly one clause of H2(n ,m), namely, clause
C=¬ph(i, j)∨¬ph(k, j). This is the clause that is assigned to p by transport function g. Set
Nbhd(p ,C) consists of two points obtained from p by flipping the value of ph(i, j) or
ph(k, j). Let p’ be either point of Nbhd(p ,C). Matrix M(p’) does not have columns
containing two 1-entries (because one 1-entry of j-th column has disappeared). Besides,
M(p’) has at most one 1-entry per row. Then p’ ∈ S1(n,m). Hence Nbhd(p ,C) ⊆ S1(n,m).

So in both cases Nbhd(p,C) ⊆ S1(n ,m) ∪ S2(n ,m).

Proof of Proposition 11. We prove the proposition by induction. Denote by Boundary(s)
and Body(s) the Boundary and Body sets constructed after performing s steps of the
algorithm. Denote by gs the transport function after performing s steps. Our induction
hypothesis is that after performing s steps of the algorithm set Boundary(s) ∪ Body(s)
is a subset of S(n,m) and gs satisfies Definition 14 (at s points wherein the function gs is
specified). First we need to check that the hypothesis holds for s=1. The starting point p
is in S1(n,m). Besides, p falsifies only clauses from H1(n,m). So if we assign a clause C
of H1(n ,m) as the value of g1 at point p, then function g1 satisfies Definition 14 .

Now we prove that from the fact the hypothesis holds after performing s steps of the
algorithm, it follows that it also holds after s+1 steps of the algorithm. Let p’ be the
point of Boundary(s) chosen at step s+1. First, let us show that transport function gs+1
satisfies Definition 14. If p’ is in S1(n,m) then it falsifies only clauses from H1(n,m). So
no matter which falsified clause is picked as the value of transport function g s+1 at point
p’, gs+1 satisfies Definition 14. If p’ is in S2(n ,m) then it falsifies exactly one clause of
H2(n,m) and maybe some clauses of H1(n ,m). Our heuristic makes us select the falsified
clause of H2(n,m) as the value of g at point p’. So again transport function gs+1 satisfies
Definition 14. Then we can apply arguments of Proposition 10 to show that from p’ ∈
S(n,m) it follows that Nbhd(p’,gs+1(p’)) is a subset of S(n ,m). Hence Boundary(s+1) ∪
Body(s+1) is a subset of S(n,m).

Proof of Proposition 12. Since signatures of p and p’ are not identical modulo
permutation then there is value k ≤ n such that M(p) and M(p’) have different number of
columns containing k 1-entries. On the other hand, no permutation π∈G(PH(n ,m)) can
change the number of columns having k 1-entries. Indeed, let M(p*) be the matrix
representation of a point p* of Bn∗m

. Each permutation of G(PH(n ,m)) consists of a
permutation of m columns of M(p*) (i.e. holes) and n rows of M(p*) (i.e. pigeons). Any
two entries e1,e2 of M(p*) that are initially in the same column (row) of M(p*) after any

 13

permutation π∈G(PH(n ,m)) end up in the same column (row). (However the column
(row) in which e1,e2 are put after permutation may be different from the initial column
(row)). This means that if M(p*) has w columns with k 1-entries then after any
permutation π∈G(PH(n ,m)) the number of such columns in M(π(p*)) is equal to w as
well. So points p and p’ cannot be symmetric.

Proof of Proposition 13. Let us show that there are permutations π ,π’ ∈G(PH(n ,m)))
such that q=π(p) and q=π’(p’), i.e. that p and q and p’ and q are in the same equivalence
class. (This would mean that p and p’ have to be in the same equivalence class as well
and so p and p’ are symmetric.)

Since p ,p’ ∈S(n ,m) then both p and p’ have only columns containing no more than
two 1-entries. Denote by n0(p),n1(p),n2(p) the numbers of columns of M(p) containing
zero, one and two 1-entries respectively (n2(p) can be equal only to 0 or 1). Since
signatures of p and p’ are identical modulo permutation then n0(p)= n0(p’),n1(p)=
n1(p’),n2(p)= n2(p’). Since we want to find q such that q=π(p) and q=π’(p’) then
n0(q),n1(q),n2(q) must be the same as for points p and p’. Let q be the point of S(n ,m) such
that in M(q) all the columns with one 1-entry go first, then they are followed by a column
of two 1-entries (if such a column exists in M(q)) and the rest of the columns of M(q) do
not contain 1-entries. Besides, if j-th column of M(q) contains only one 1-entry, then this
1-entry is located in the j-th row. If j-th column of M(q) contains two 1-entries then they
are located in j-th and (j+1)-th rows. It is not hard to see that each row of M(q) contains at
most one 1-entry and so q ∈ S(n ,m).

Point p can be transformed to q by a permutation π=π1π2 where π1 and π2 are defined
as follows. π1 is a permutation of columns of matrix M(p) that makes n1(p) columns
having only one 1-entry the first columns of M(π1(p)). Besides, permutation π1 makes
the column of M(p) that has two 1-entries (if such a column exists) the (n1(p)+1) -th
column of M(π1(p)). π2 is a permutation of rows of matrix M(π1(p)) that places the 1-
entry of j-th column, 1≤ j ≤ n1(p) in the j-th row of M(π2(π1(p))). Besides, permutation π2
places the two 1-entries of the (n1(p)+1)-th column of M(π1(p)) (if such a column with
two 1-entries exists) in (n1(p)+1)-th and (n1(p)+2)-th rows of M(π2(π1(p))) respectively.
Since all rows of M(π1(p)) have at most one 1-entry, permutation π2 always exists. It is
not hard to see that M(π2(π1(p))) is equal to M(q) described above. The same procedure
can be applied to point p’.

Proof of Proposition 14. First of all, it is not hard to see that points from S1(n ,m) and
S2(n,m) have different signatures (for a point p of S2(n ,m) matrix M(p) has a column with
two 1-entries, while points of S1(n,m) do not have such columns in their matrix
representation). This means that no equivalence class contains points from both S1(n,m)
and S2(n,m). For a point p of S1(n ,m) matrix M(p) can have k columns with one 1-entry
where k ranges from 0 to m. From Proposition 12 and Proposition 13 it follows that
points with the same value of k in their signatures are in the same equivalence class
while points with different values of k in their signatures are in different equivalence
classes. So there are m+1 equivalence classes in S1(n,m).

For a point p of S2(n,m) matrix M(p) has exactly one column with two 1-entries.
Besides, M(p) can have k columns with one 1-entry where k ranges from 0 to m-1.
Points with the same value of k in their signatures are in the same equivalence class while

 14

points with different value of k in their signatures are in different equivalence classes. So
there are m equivalence classes in S2(n,m). Hence the total number of equivalence classes
in S(n ,m) is 2∗ m+1.

Proof of Proposition 15. According to Proposition 14 set S(n ,m) consists of 2∗m+1
equivalence classes. Let S’ be a set consisting of 2∗ m+1 points where each point is a
representative of an equivalence class (one representative per class). According to
Proposition 7 set S’ is stable with respect to F and g modulo symmetry.

Proof of Proposition 16. The algorithm in question can have only two kinds of steps. At
a step of the first kind at least one point of Nbhd(p,g(p)) (where p is the point of the
Boundary picked at the current step) is added to the Boundary. At a step of the second
kind no new point is added to the Boundary (because each point of p’ of Nbhd(p ,g(p)) is
either in Body ∪ Boundary or the latter contains a point p” that is symmetric to p’). The
number of steps of the first kind is less or equal to 2∗ m+1. Indeed, the total number of
points contained in Body ∪ Boundary cannot exceed the number of equivalence classes
(which is equal to 2∗ m+1) because no new point is added to Boundary if it is symmetric
to a point of Body ∪ Boundary. The number of steps of the second kind is also less or
equal to 2∗m+1. The reason is that at each step of the second kind a point of the
Boundary is moved to the Body and the total number of points that can appear in the
Boundary is bounded by the number of equivalence classes in S(n ,m) i.e. by 2∗m+1. So
the total number of steps in the algorithm is bounded by 2∗(2∗m+1). At each step of the
algorithm it is checked if the current point is symmetric to a point of Body ∪ Boundary.
The complexity of this operation is bounded by (2∗ m+1)∗f where 2∗m+1 is the maximum
number of points set Body ∪ Boundary can have and f is the complexity of checking
whether two points of Bn∗m are in the same equivalence class. So the time complexity of
the algorithm is O(m2∗f).

Appendix C . Some experimental results
In this appendix we compute SSPs for two classes of CNF formulas: random

formulas and pigeon-hole formulas. These classes were shown to be exponentially hard
for general resolution [2,6]. Table 1 gives the results of computing SSPs for random CNF
formulas from the “hard” domain [8] (the number of clauses is 4.25 times the number of
variables). For computing SSPs we used the algorithm described in Section 4 enhanced
by the following heuristic. When picking a clause to be assigned to the current point p' of
the Boundary at Step 5, we give preference to the clause C (falsified by p') for which
the maximum number of points of Nbhd(p',C) are already in Body or Boundary. In other
words, when choosing the clause C to be assigned to p', we try to minimize the number
of new points to be added to the Boundary.

We generated 10 random CNFs of each size (number of variables). Table 1 gives the
average values of the SSP size and the share (percent) of the Boolean space taken by an
SSP. It is not hard to see that the SSP size grows very quickly. So even for very small
formulas it is very large. An interesting fact though is that the share of the Boolean space
taken by SSPs constructed by the described algorithm steadily decreases as the number of
variables grows.

 15

Such a poor performance on random formulas can be explained by the following
two flaws of the described algorithm. First, an SSP is constructed point-by-point while
computing an SSP in larger chunks of points (clustering “similar” points of the Boolean
space) should be much more efficient. Second, the algorithm looks for a set of points that
is stable with respect to the initial set of clauses. On the other hand, if the algorithm is
allowed to resolve clauses of the initial CNF, it may find a much smaller set of points that
is stable with respect to a set of resolvents.

Table 2 shows, however, that even point-by-point SSP computation can be efficient.
In Table 2 we compare the performance of SAT-solver Chaff [9] and the proposed
algorithm of SSP computation on formulas PH(n+1,n) (i.e. n+1 pigeons and n holes).
Chaff, which is currently considered as the best SAT-solver based on the DPLL
procedure [4], takes about 1 hour to finish the formula of 12 holes. It is not hard to see
that Chaff's runtime grows up at least 5 times as the size of the instance increases just by
one hole.

Table 1. SSPs of “hard” random CNF formulas

number
of

variables

the size of
SSP

#SSP / #All_Space
%

10 430 41.97
11 827 40.39
12 1,491 36.41
13 2,714 33.13
14 4,931 30.10
15 8,639 26.36
16 16,200 24.72
17 30,381 23.18
18 56,836 21.68
19 103,428 19.73
20 195,220 18.62
21 392,510 18.72
22 736,329 17.55
23 1,370,890 16.34

For each of the formulas of Table 2 a set of points that was stable modulo symmetry

was computed using the algorithm described in the end of Section 5. This algorithm was
implemented in a program written in C++. To check whether two points of the Boolean
space were symmetric the algorithm just compared their signatures. Points with idenical
(modulo symmetry) signatures were assumed to be symmetric. This means that the
runtimes for computing SSPs given in Table 2 do not take into account the time needed
for symmetry checks. By a symmetry check we mean checking if a point p to be added to
the Boundary is symmetric to a point p' of the current set Boundary ∪ Body. A more
general version of the algorithm, instead of comparing signatures would have to check if
there is a symmetry of PH(n+1,n) that transforms p to a point of Boundary ∪ Body or

 16

vice versa. Nevertheless, Table 2 gives an idea of how easy formulas PH(n ,m) can be
solved by contructing an SSP modulo symmetry.

Table 2. Solving PH(n+1,n) formulas

Computing SSP modulo symmetry Number
of holes

Number of
variables

Chaff
Time (sec.) Time (sec.) Size of SSP modulo

symmetry
8 72 2.2 0.05 17
9 90 10.6 0.07 19
10 110 51.0 0.09 21
11 132 447.9 0.13 23
12 156 3532.3 0.17 25
15 240 > 1 hour 0.38 31
20 420 > 1 hour 1.04 41
40 1640 > 1 hour 13.33 81

