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Abstract.  We show that a conjunctive normal form (CNF) formula F  is unsatisfiable iff  there is 
a set of points of the Boolean space that is stable with respect to F. So testing the satisfiability of  
a  CNF  formula  reduces to looking for a stable set of points ( SSP). We give a simple algorithm 
for  constructing a set of points that is stable with respect to a given set of clauses. Constructing 
an SSP can be viewed as a “natural” way of search space traversal. This naturalness of search 
space examination allows one to make use of  the regularity of CNF formulas to be checked for 
satisfiability. We illustrate this point by showing that if a CNF  formula  is symmetric with respect 
to a group of permutations, it is very easy to make use of this symmetry when constructing an 
SSP. As an example, we show that the unsatisfiability of pigeon-hole CNF formulas can be 
proven by examining only a linear size set of points that can be constructed  in quadratic time. 
 

1. Introduction 
A common belief is that there is no polynomial time algorithm for the satisfiability 

problem. Nevertheless, many classes of  “real-life”  CNF formulas have  structural 
properties that reduce (or may potentially reduce) the complexity of checking these CNF 
formulas for satisfiability from exponential to polynomial. However, the existing 
algorithms are not very good at taking into account structural prope rties of  CNF 
formulas. One of the reasons is that currently there is no “natural” way of  traversing 
search space. For example, in the DPLL procedure [4], that is the basis of many 
algorithms used in practice, s earch is organized as a binary tree. In reality, the search tree 
is used only to impose a linear order on the points of the Boolean space to avoid visiting 
the same point twice. However, this order may be in conflict with “natural” relationships 
between points of the Boolean space that are imposed by the CNF  formula to be checked 
for satisfiability (for example, if this formula has some symmetries). 

In this paper, we introduce the notion of a stable set of points (SSP). We show that a 
CNF formula F is unsatisfiable if and only if there is a set of points of the Boolean space 
that is stable with respect to F.  If F is satisfiable then any subset of points of the Boolean 
space is unstable, and an assignment satisfying F will be found in the process of  SSP 
construction.  We describe a simple algorithm for constructing an SSP.  

An important fact is that, generally speaking, a set of points that is stable with respect 
to a CNF formula F  depends only on the clauses  F consists of. So the process of 
constructing an SSP can be viewed as a “natural” way of traversing search space when 
checking F for satisfiability.  For instance, if F  has symmetries, they can be easily taken 
into account when constructing an SSP.  To illustrate this point, we consider the class of 
CNF formulas that are symmetric with respect to a group of permutations. We show that 
in this case for proving the unsatisfiability of a CNF formula it is sufficient to construct a 
set of points that is stable modulo symmetry. In particular, as it is shown in the paper for 
pigeon-hole CNF formulas there is a linear size set of points that is stable modulo 
symmetry. So the  unsatisfiability of pigeon-hole CNF formulas can be proven by 
examining only a set of points of linear size. 



 2 

The notion of an SSP is the development of the idea of 1-neighborhood exploration  
introduced in [5]. From the practical point of view the notion of an SSP (and, more 
generally, the notion of 1-neighborhood exploration) is important because it gives a new 
criterion for algorithm termination. Namely, once it is proven that the examined part of 
the Boolean space is an SSP (or contains an SSP) one can claim that the CNF under test 
is unsatisfiable. 

The rest of the paper is organized as follows. In Section 2 we introduce the notion of 
an SSP. In Section 3 we show the relationship between SSPs and sets of reachable points. 
In Section 4  we describe a simple algorithm for constructing an SSP. In Section 5 we 
show that our algorithm for constructing SSPs can be easily modified to take into account 
formula’s symmetry.  In Section 6 we apply the modified algorithm to a class of highly 
symmetric formulas called pigeon-hole CNF formulas. In Section  7 we give a summary 
of results and directions for future research. In Appendix A we describe background  on 
testing the satisfiability of symmetric CNF formulas. In appendix B proofs of the 
propositions are given. In appendix C some experimental results are shown. 

 

2. Stable set of points 
In this section, we introduce the notion of an SSP.  Let  F  be a CNF formula of n  

variables x1 ,...,xn. Denote by B the set {0,1} of values taken by a Boolean variable. 
Denote by Bn the set of points the Boolean space specified by variables x1,...,xn.  A point 
of Bn is an assignment of values to all the  n variables.  
Definition 1.  A disjunction of literals (also called a clause) C is called satisfied by a 
value assignment (point) p if C(p)=1. Otherwise, clause C is called falsified by p.   
Definition 2. Let  F be a CNF formula. The satisfiability problem is to find a  value 
assignment (point) satisfying  all the clauses of F. This assignment is called a satisfying 
assignment. 
Definition 3.  Let p be a point of the Boolean space falsifying a clause C. The 1-
neighborhood of point p  with respect to clause C (written Nbhd(p ,C)) is the set of points 
that are at Hamming distance 1 from p and that satisfy C.  
Example 1. Let C=x1∨¬ x3∨x6 be a clause specified in the Boolean space of 6  variables 
x1,…,x6. (Symbol  ‘¬’ means negation.) Let p=(x1=0,x2 =1,x3=1,x4 =0,x5=1,x6 =0) be a 
point falsifying C. Then Nbhd(p,C)  consists of the following three points: 
p1=(x1=1,x2 =1,x3=1,x4 =0,x5=1,x6 =0), p2=(x1=0,x2=1,x3=0 ,x4=0,x5=1,x6=0), p3=(x1 =0,x2=1, 
x3=1,x4=0,x5=1,x6=1). Points p1,p2,p3 are obtained from p by flipping the value of 
variables x1,x3 ,x6 respectively i.e. the variables whose literals are in C. 

Denote by Z(F) the set of points at which F = 0. If F  is unsatisfiable,  Z(F) = Bn.  
Definition 4.  Let F  be a CNF formula and P be a subset of Z(F). Mapping g of P to F is 
called a transport function if, for any p ∈ P,  clause g(p) ∈ F is falsified by p. In other 
words, a transport function g:P→F is meant to assign each point p∈P a clause that is 
falsified by p. We call mapping P→F a transport function because, as it is shown in 
section 3, such a mapping allows one to introduce some kind of  “movement” of points in 
the Boolean space. 
Definition 5. Let P be a nonempty subset of Z(F) and F  be a CNF formula. Set  P is 
called stable with respect to a CNF formula F and transport function g: P→F, if  ∀ p ∈ P,  
Nbhd(p ,g(p))  ⊆ P. 
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Remark.  Henceforth, if we say that a set of points P is stable with respect to a CNF 
formula F without mentioning a transport function, we mean that there is a mapping 
g:P→F  such that P is stable with respect to F and g.  
Example 2. Consider an unsatisfiable CNF formula F consisting of 7 clauses: C1=x1∨x2 , 
C2= ¬ x2∨x3, C3= ¬ x3∨x4 , C4= ¬ x4∨x1 , C5= ¬ x1∨x5 , C6= ¬ x5∨x6 , C7= ¬ x6∨ ¬ x1. 
Clauses of F are composed of literals of  6 variables: x1,…,x6. The following 14 points 
form an SSP P: p1=000000, p2=010000, p3=011000, p4=011100, p5=111100, p6=111110, 
p7=111111, p8=011111, p9 =011011, p10=010011, p11=000011, p12=100011, p13=100010, 
p14=100000. (Values of variables are given in the order variables are numbered. For 
example, p4 consists of assignments x1=0, x2=1, x3=1, x4=1, x5=0, x6=0.) Set P is stable 
with respect to the transport function g specified as: g(p1)=C1, g(p2)=C2, g(p3)=C3, 
g(p4)=C4, g(p5)=C5, g(p6)=C6, g(p7)=C7, g(p8)=C4, g(p9)=C3, g(p10)=C2, g(p11)=C1, 
g(p12)=C7, g(p13)=C6, g(p14)=C5.  It is not hard to see that  g  indeed is a transport function 
i.e. for any point pi of P it is true that C(pi)=0 where C=g(pi). Besides, every point pi of P 
satisfies the condition Nbhd(p ,g(p)) ⊆ P of Definition 5.  Consider, for example, point  
p10=010011. The value of g(p10) is C2, C2 = ¬ x2∨x3 and  the value of Nbhd (p10,C2) is 
{p11=000011, p9 =011011}, the latter being a subset of  P. 
Proposition 1.  If there is a set of points that is stable with respect to a CNF formula F, then 
F is unsatisfiable.  
Proofs of all the propositions are given in  Appendix B. 
Proposition 2.  Let F be an unsatisfiable CNF formula of n variables. Then set Z(F) is 
stable with respect to F and any transport function Z(F)→ F. 
Remark. From Proposition 1 and Proposition 2 it follows that a CNF formula  F is 
unsatisfiable if and only if there is a set of points stable with respect to F. 
 

3. SSPs as  sets of  reachable points 
In this section,  we show the relationship between SSPs and sets of reachable points. 

Definition 6. Let F  be a CNF formula and g: Z(F)→F  be a transport function. A 
sequence of points p1,...,pk is called a path from point p1 to point pk in set P with 
transport function g , if points p1,...,pk-1 are in P and  pi ∈ Nbhd(pi-1,g(pi-1)), 2 ≤ i ≤ k. 
(Note that  the last point of the path, i.e. pk , does not have to be in P.) We will assume 
that no point repeats twice (or more) in a path.  
Example 3.  Consider the CNF formula and transport function of Example 2.  Let P be the 
set of points specified in Example 2.  Sequence of points p1,p14,p13,p12 form a path from  
p1 to p12. Indeed, it is not  hard to check that Nbhd(p1,g(p1))={p2,p14}, 
Nbhd(p14,g(p14))={p13,p1}, Nbhd(p13,g(p13))={p14,p12}, Nbhd(p12,g(p12))={p13,p11}.  So 
each point p’ of the path (except the starting point i.e. p1)  is contained in the 
Nbhd(p”,g(p”)) where p” is the preceding point. 
Definition 7. Let F  be a CNF formula. Point p” is called reachable from point  p’ by 
means of transport function g:Z(F)→F if there is a path from p’ to p”  with transport 
function g. Denote by  Reachable(p ,g) the set that consists of point p and all the points 
that are reachable from  p by means of  transport function g. 
Proposition 3. Let F be a satisfiable CNF formula, p be a point of Z(F), and s be the closest  
to p (in Hamming distance) satisfying assignment. Let g:Z(F)→F be a transport function.  
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Then in Z(F)  there is a path from p to  s with transport function g i.e. solution s is 
reachable from p. 
Proposition 4.  Let F  be a CNF formula, g:Z(F)→F  be a transport function, and  p be a 
point from Z(F).  If P=Reachable(p ,g) does not contain a satisfying assignment, then P is 
stable with respect to  F   and g and so F is unsatisfiable. 
 

4. Testing satisfiability of CNF formulas  by SSP construction 
In this section, we describe a simple algorithm for constructing an SSP. It is based on 

Proposition 3 and Proposition 4.  Let F be a CNF formula to be checked for satisfiability. 
The idea is to pick  a point p  of the Boolean space and construct set Reachable(p ,g).  
According to Proposition 4 if Reachable(p,g) does not contain a solution, it is stable and 
so F is unsatisfiable. On the other hand, if F is satisfiable, then according to Proposition 3  
set Reachable(p ,g) must contain a solution. Since transport function g:Z(F)→F is not 
known beforehand, it is built on the fly.  In the description of the algorithm given below, 
set Reachable (p ,g) is broken down into two parts: Boundary and Body. The Boundary  
consists of those points of the current  set Reachable(p ,g) whose 1-neighborhood has not 
been explored yet. At each step of the algorithm a point p’ of the Boundary is extracted 
and a clause C falsified by p'  is assigned as the value of g(p’). Then the set Nbhd(p’,C) is 
generated and its points (minus those that are already in the Body or Boundary) are added 
to the Boundary.  This goes on until the Boundary is empty (F is unsatisfiable) or a 
satisfying assignment is found (F  is satisfiable). 
1. Generate a starting point p.  Boundary={p}. Body=∅ , g=∅. 
2. If  the Boundary is empty, then the Body is an SSP  and F is unsatisfiable. The 

algorithm terminates.  
3. Pick a point p’  ∈ Boundary.  Boundary=Boundary \ {p’}. 
4. Find a set M  of clauses that are falsified by  point p’. If M=∅ , then CNF formula F is 

satisfiable  and p’ is a satisfying assignment  The algorithm terminates. 
5. Pick a clause C  from  M. Take C  as the value of g(p’). Generate Nbhd(p’,C).  

Boundary=Boundary ∪ (Nbhd(p’,C) \ Body).  Body = Body ∪ {p’}. 
6. Go to step 2. 

Interestingly, the described algorithm can be viewed as an extension  of 
Papadimitriou’s algorithm [10] and Walksat [12] to the case of unsatisfiable CNF 
formulas. Papadimitriou's algorithm and  Walksat can be applied only to satisfiable CNF 
formulas since they do not store visited points of the Boolean space. The remarkable fact 
is that the number of points that one has to explore to prove the unsatisfiability of a CNF 
formula can be very small.  For instance, in  Example 2   an SSP of a CNF formula of 6 
variables consists only of 14 points while the Boolean space of 6 variables consists of 64 
points. In is not hard to show that for a subclass of the class of 2-CNF formulas (a clause 
of a 2-CNF formula contains at most 2 literals) there is always an SSP of linear size. This 
subclass consists of  formulas analogous to the one described in  Example 2. However, 
we have not proved (or disproved) this claim for the whole class of 2-CNF formulas yet.  

From the practical point of view the described algorithm has two substantial flaws. 
First, an SSP  is constructed point-by-point while computing an SSP in larger chunks of 
points (clustering “similar” points of the Boolean space) should be more efficient.  
Second, the algorithm looks for a set of points that is stable with respect to the initial set 
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of clauses. On the other hand, if an algorithm is allowed to resolve clauses of the initial 
CNF, it may find a much smaller set of points that is stable with respect to a set of 
resolvents.  Nevertheless, for  symmetric CNF formulas (considered in Sections 5 and 6) 
even point-by-point SSP computation can be efficient.  

 

5. Testing satisfiability of symmetric CNF formulas  by SSP 
construction 

In this section we show how the algorithm of Section 4 should be modified to take into 
account formula’s symmetry.  
Definition 8.  Let  X={x1 ,....,xn} be a set of Boolean variables.  Permutation π defined on 
set X is a bijective mapping of  X onto itself. 

Let F={C1,...,Ck} be a CNF formula.  Let  p=(x1,...,xn) be a point of Bn. Denote by π(p) 
point (π(x1),...,π(xn)).  Denote by π(Ci) the clause that is obtained from Ci ∈ F by 
replacing variables x1,..,xn  with  variables π(x1),...,π(xn) respectively.  Denote by π(F) the 
CNF formula obtained from F  by replacing each clause Ci  with π(Ci). 
Definition 9.  CNF formula F  is called symmetric with respect to permutation π if each 
clause π(Ci) of π(F)  is identical to a clause Ck ∈ F. 

The set of the permutations, with respect to which a CNF formula is symmetric, forms 
a group. Henceforth, we will  denote this group by G. The fact that a permutation π is an 
element of G  will be denoted by π∈G. Denote by 1 the identity element of G. 
Definition 10.  Points p and p’ are called symmetric if there is a permutation π ∈ G such 
that  p’=π(p) or p=π(p’). 
Remark. The binary relation introduced by Definition 10 is an equivalence relation. This 
relation partitions the Boolean space Bn into equivalence classes. Each class consists of a 
set of pairwise symmetric points. It is not hard to show that if G is a group of permutation 
of a CNF formula F, then for any pair p ,p’ of symmetric points F(p)=F(p’). 
Definition 11.   Let F  be a CNF formula and P be a subset of Z(F). Set P is called stable 
modulo symmetry with respect to F  and transport function g: P→F  if for each p ∈ P 
every point p’ ∈ Nbhd(p ,g(p)) is either in  P or there is  a point p” of P that is symmetric 
to p’. 
Proposition 5. Let Bn be the Boolean space specified by variables X={x1,....,xn}. Let  p be a 
point of Bn, C be a clause falsified by p, and q ∈ Nbhd(p ,C) be obtained from p by 
flipping the value of variable xi. Let π be a permutation of variables from X, p’ be equal 
to π(p), C’ be equal to π(C), and q’ ∈ Nbhd(p’,C’) be obtained from p’ by flipping the 
value of variable π(xi). Then  q’=π(q).  In other words, for each point q of  Nbhd(p ,C) 
there is a point q’ of  Nbhd(p’,C’) such that q’=π(q). 
Proposition 6.   Let F be a CNF formula, P be a subset of Z(F), and g:P→F be a transport 
function. If P is stable modulo symmetry with respect to F and g , then CNF formula F is 
unsatisfiable. 
Proposition 7.  Let P⊆ Bn be a set of points that is stable with respect to a CNF formula F 
and transport function g: P→F.  Let  P’  be a subset of P  such that for each point p of P 
that is not in P’ there is a point p’ ∈ P’ symmetric to p. Then P’ is stable with respect to 
F and g modulo symmetry. 
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Definition 12.  Let F  be a CNF formula, G be its group of permutations, p be a point of  
Z(F), and g: P→F  be a transport function. Set Reachable(p,g ,G) is called the set of 
points reachable from p modulo symmetry if  a) it includes point p; b) each point p’ that 
is reachable from p  by means of transport function g  is either in Reachable (p ,g,G) or 
there exists point p” ∈ Reachable(p ,g,G) that is symmetric to p’. 
Proposition 8. Let F be a CNF formula, G be its group of permutations, p be a point of 
Z(F), and g: P→F be a transport function. If set  P=Reachable(p ,g ,G) does not contain a 
satisfying assignment, then it is stable modulo symmetry with respect to F and  g. 
Proposition 9.  Let F be a CNF formula, G be its group of permutations, g:Z(F)→F be a 
transport function, and p be a point of  Z(F).  CNF formula F  is satisfiable if and only if 
Reachable(p ,g ,G) contains a satisfying assignment. 

Let F be a CNF formula and G be its group of permutations. According to Proposition 
9 when testing the satisfiability of F it is sufficient to construct set Reachable(p ,g ,G). 
This set can be built by the algorithm of Section 4 in which step 5 is modified in the 
following way. Before adding a point p” from Nbhd(p’,C) \ Body to the Boundary it is 
checked if there is a point of Boundary ∪ Body  that is symmetric to p”. If such a point 
exists, then p” is not added to the Boundary. 

 

6. Computing SSPs of pigeon-hole CNF formulas 
In this section, we apply the theory of Section 5 to a class of symmetric CNF formulas 

called pigeon-hole formulas. Pigeon-hole CNF formulas, by means of  propositional 
logic, describe the fact that   n objects (pigeons) cannot be placed  in m holes so that no 
two objects occupy the same hole if n > m.   Pigeon-hole formulas was the first class of 
CNF formulas for which resolution was proven to be exponential [6]. 
Definition 13.   Denote by  ph(i,k) the Boolean variable whose value indicates if i-th 
pigeon is in k-th hole (ph(i,k)=1 means that the pigeon is in the hole). Pigeon-hole CNF 
formula (written PH(n,m)) consists of the following two sets of clauses  (denote them by 
H1(n,m) and H2(n,m)). Set H1(n,m) consists of n  clauses ph(i,1)∨ph(i,2)∨ ... ∨ ph(i,m), 
i=1,...,n ,  i-th clause encoding the fact that i-th pigeon has to be in at least one hole.  Set   
H2(n,m) consists of  m∗n∗(n-1)/2  clauses ¬ph(i,k)∨¬ph(j,k), i < j,  1 ≤i,j ≤ n, 1 < k < m. 
Clause ¬ph(i,k)∨¬ph(j,k) encodes the fact that i-th and j-th pigeons i≠j  cannot be  placed 
in the k-th hole together. 

CNF formula PH(n ,m) has  n∗m  variables. To “visualize” points of the Boolean space 
Bn∗m we will assume that the variables of PH(n,m) are represented by entries of a matrix 
M of n rows and m columns. Entry M(i,j) of the matrix corresponds to variable ph(i,j). 
Then each point of the Boolean space can be viewed as a matrix n×m whose entries take 
values 0 or 1. Denote by M(p) the matrix representation of point p.  Denote by S(n,m) the 
following set of points of the Boolean space. S(n ,m) consists of two subsets of points 
denoted S1(n,m) and S2(n ,m).  A point p is included in subset S1(n ,m) if and only if each 
row and column of M(p) contains at most one 1-entry.  A point p is included in subset 
S2(n,m) if and  only if  a) matrix M(p) has exactly one column containing two 1-entries 
and the rest of the columns have at most one 1-entry; b) M(p) contains at most 1-entry per 
row. 

It is not hard to see that for  a point p   from S1(n ,m) there is a clause of  H1(n ,m) that p  
does not satisfy. The latter is true because, since n > m and every column has at most one 
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1-entry, there is at least one row (say i-th row) of M(p) consisting only of 0-entries. Then 
p does not satisfy clause ph(i,1)∨ph(i,2)∨ ... ∨ ph(i,m) of H1(n,m).  For each point p from 
S2(n,m) there is exactly one clause from H2(n ,m) that p  does not satisfy (and maybe some 
clauses of H1(n ,m)).  Suppose for example, that in M(p) entries M(i,k) and M(j,k) are 
equal to 1 (i.e. k-th column is the one containing two 1-entries). Then the  only clause of 
H2(n,m)  point p does not satisfy  is ¬ph(i,k)∨¬ph(j ,k). 
Definition 14.  Denote by g  the following transport function mapping S(n,m) to PH(n ,m).  
If p ∈ S1(n,m) then g(p) is equal to a clause from H1(n,m) that p does not satisfy (no 
matter which). If p ∈ S2(n,m) then g(p) is equal to the clause from H2(n,m)  that p does 
not satisfy. 
Proposition 10.  Set of points S(n ,m) = S1(n,m) ∪ S2(n ,m) is stable  with respect to the set of 
clauses H1(n,m) ∪ H2(n,m) and transport function g  specified above. 
Proposition 11.  Let p be the point in which every variable is assigned value 0. Let g: Bn∗m 
→ PH(n ,m) be a transport function. Then set Reachable(p ,g)  constructed by the  
algorithm described in Section 4 is  a subset of S(n ,m) if the following heuristic is used 
when constructing an SSP. If  a new point p to be added to the Boundary falsifies clauses 
from both H1(n ,m) and H2(n,m), then a clause of H2(n,m) is selected as the value of g(p). 

The group of permutations of CNF formula PH(n,m) (denote it by G(PH(n,m))) is the 
direct product of  the group of all the permutations of n pigeons and the group of all the 
permutations of m holes. 
Definition 15.  Let p be a point of the Boolean space Bn∗m in which PH(n,m) is specified. 
Vector  (c1,…,cm) where cj , 1 ≤ j ≤ m is the number of 1-entries in the j-th column of 
M(p), is called the signature of p. Signature v’ of p’ and v” of  p”  are said to be identical 
modulo permutation  if  v’ can be transformed to v” by a permutation. 
Proposition 12.  Let p and p’ be points of  Bn∗m

  such that their signatures are  are not 
identical modulo permutation. Then there is no   permutation π∈G(PH(n ,m))) such that 
p’=π(p) i.e. points p and p’ are not symmetric. 
Proposition 13.  Let p and p’ be points of S(n ,m) such that their signatures are identical 
modulo symmetry. Then points p and p’ are symmetric 
Remark.  From  Proposition 12 and Proposition 13 it follows that points p and p’  of 
S(n,m) are symmetric with respect to G(PH(n ,m)) iff the signature  v’ of p’ and signature 
v” of  p” are identical modulo permutation.    
Proposition 14.  Set S(n ,m) contains 2∗ m+1 equivalence classes. 
Proposition 15.  There is a set of points that is stable with respect to PH(n,m) and transport 
function g (specified by Definition 14) modulo symmetry, and  that consists   of  2∗m+1 
points. 
Proposition 16.  Let p∈S1(n,m) be the point in which all variables are assigned 0. Let  
Reachable(p ,g ,G(PH(n,m))) be the SSP built by the algorithm described in the end of 
Section 5 where the construction of the transport function is guided by the heuristic 
described in Proposition 11. Then set Reachable(p ,g,G(PH(n ,m))) contains no more than 
2∗ m+1 points. The time taken by  the algorithm for constructing such a  set  is O(m2∗f) 
where f is the complexity of checking if  two points of S(n,m) are symmetric. 
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7.  Conclusions 
We show that satisfiability testing of a CNF formula reduces to constructing a stable 

set of points (SSP).  An SSP of a CNF formula can be viewed as an inherent 
characteristic of this formula. We give a  simple procedure for constructing an SSP.  As a 
practical application we show that the proposed procedure of SSP construction can be 
easily modified to take into account symmetry (with respect to variable permutation) of 
CNF formulas.  In particular, we consider a class of symmetric CNF formulas called 
pigeon-hole formulas. We show that the proposed algorithm can prove their 
unsatisfiability in quadratic time and there is a stable (modulo symmetry) set of points of 
linear size. 

An interesting direction for future research is to relate the size of SSPs of a CNF 
formula to the complexity of proving its unsatisfiability. In particular, it is important to 
identify classes of CNF formulas having  SSPs of polynomial size. A natural candidate is 
the class of  2-CNF formulas. On the practical side,  it is important to develop methods 
that a) are able to construct an SSP in “chunks”  clustering points that are “similar”; b) 
can use resolution to reduce the size of SSPs by producing “better” sets of clauses. 
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Appendix A . Some background on testing satisfiability of symmetric CNF 
formulas  

In this appendix, we give some background on testing the satisfiability of symmetric 
CNF formulas.  Methods for   simplifying satisfiability check for symmetric formulas 
have received substantial attention in the past. In [7]  it was shown that if the resolution 
system is enhanced by a “symmetry rule” then the complexity of proofs for some classes 
of formulas reduces from exponential to polynomial.  This extra rule allows to “shortcut” 
the deduction of  implicates that are symmetric to ones deduced before. In [13] it was 
shown that in the resolution system with the symmetry rule, the satisfiability of pigeon-
hole formulas can be refuted with a proof of length  (3n+1)n/2  where n is the number of 
holes. Unfortunately,  the resolution system (whether it has the symmetry rule or not) is 
non-deterministic and so these results are not very helpful in designing deterministic 
algorithms.  

Practical (and hence deterministic) algorithms for testing satisfiability of symmetric 
formulas were considered in [1,3,11]. In [1] a backtracking algorithm with some 
machinery for prunning symmetric branches was introduced. The problem of such an 
approach is that the ability to prune symmetric branches is obtained at the expense of 
losing  the freedom of search tree examination. So if a new scheme of backtracking is 
found in the future, a new algorithm would have to be designed to take into account 
symmetries of the CNF under test. 

To solve the problem, in [3] it was  suggested to add to the CNF formula F to be tested 
for satisfiability a set  G of “symmetry breaking” clauses . The idea is to find such a set G 
of clauses that only one point of each symmetry class satisfies all the clauses of G. This 
way search in symmetric portions of the Boolean space is pruned  earlier than without 
adding clauses of  G (if  a  clause of  G  is  falsified before any clause of F). The 
generation of symmetry-breaking clauses G is done by a separate procedure performed 
before actual  satisfiability testing. So this procedure (used as a preprocessor) can be run 
in combination with  any SAT-solver to be developed in the future. 

One of the flaws of the approach is that  the problem  of generating a full set of 
symmetry breaking clauses is NP-hard [3]. Moreover, for some groups the number of all 
clauses that have to be generated to break all symmetris of the group is exponential [11]. 
This leads to the following problem. Since often one cannot break all the symmetries, it is 
reasonable to try to break only symmetries whose elimination would symplify 
satisfiability testing the most.  (For example, if at the satisfiability testing step a search 
tree is explored, we would like  symmetry breaking clauses to help prune largest subtrees 
of the search tree. )  However, since symmetry processing and satisfiability testing are 
performed separately, at the symmetry processing step we do not know which 
symmetries should be broken. (In other words, when generating symmetry breaking 
clauses we do not have information about which subtrees of the future search tree are 
going to be large.)  

This suggests that even though incorporating symmetry processing into the current 
backtracking algorithms is difficult, satisfiability testing and symmetry processing should 
be tightly linked. One more reason for such a conclusion is that  non-symmetric (or 
having little symmetry) “real-life” CNF formulas may have highly symmetric 
subformulas (i.e. CNF formulas obtained  from the initial CNF after making a number of 
value assignments). Such a kind of symmetry can be used only in the process of 
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satisfiability testing. So, instead of separating symmetry processing and satisfiability 
testing steps it makes sense  to  try to find  a search space traversal scheme that is more  
amenable to symmetry processing than backtracking. We believe that bulding an SSP 
could be such a scheme. The point is that an SSP of a CNF formula F is an inherent 
characteristic  of F. So if F has some symmetries, an SSP has these symmetries as well, 
which makes it easy to use them during satisfiability testing. 
 
 
Appendix B: Proofs of the propositions 
 
Proof of  Proposition 1. Assume the contrary. Let  P be a set of points that is stable with 
respect to F and a transpor t function g, and  p* be a satisfying assignment  i.e. F(p*) = 1.  
It is not hard to see that p* ∉ P because each point p  ∈ P  is assigned a clause C=g(p) 
such that C(p)=0 and so F(p)=0.  Let p be a point of P that is the closest to p* in 
Hamming distance.  Denote by C the clause that is assigned to p by transport function g  
i.e. C=g(p). Denote by Y  the set of variables values of which are different in p and p*. 

Let us show that C cannot have literals of variables of Y.  Assume the contrary, i.e. 
that C  contains a literal of x ∈ Y. Then, since P  is stable with respect to F and g , it has to 
contain the point p’  which is obtained from p by flipping the value of x. But then p’ ∈ P 
is closer to p* than p. So we have a contradiction.  Since   C(p)=0 and C does not contain 
literals of variables whose value are different in p and p* we have to conclude that 
C(p*)=0. This means that p* is not a solution and so we have a contradiction. 
 
Proof of Proposition 2.  Since F is unsatisfiable, then Z(F)=Bn.  Then, given a transport 
function g:Z(F) → F, condition Nbhd(p ,g(p)) ⊆ Bn holds for every point p ∈ Bn.  
 
Proof of  Proposition 3.  Denote by Y  the set of variables whose values are different in p  
and s. Since F(p)=0, then p ∈ Z(F) and function g assigns a clause C to  p where C(p)=0. 
All literals of C are set to 0 by p. On the other hand, since s is a solution then at least one 
literal of  C  is set by s to 1.  Then C has at least one literal of a variable from Y. Flipping 
the value of this variable of Y in p we obtain a point p’  which is closer to point s by 1  (in 
Hamming distance). Point p’ is reachable from p by means of transport function g.  If 
|Y|>1, then  p’ cannot be a satisfying assignment since, by our assumption, s is the closest 
to p satisfying assignment. Going on in this manner we reach satisfying assignment s in 
|Y| steps.  
 
Proof of Proposition 4.  Assume the contrary, i.e. that Reachable(p,g) is not stable. Then 
there exists a point p’ of Reachable(p,g) (and so reachable from p) such that  a point p”  
of  Nbhd(p’,g(p’)) is not in Reachable(p,g).  Since p” is reachable from  p’  it is also 
reachable from  p.  We have a contradiction.  
 
Proof of Proposition 5.  The value of variable xk , k≠i in q is the same as in p. Besides, the 
value of  variable π(xk) in  q’  is the same as in p’ ( q’  is obtained from  p’  by changing 
the value of variable π(xi)  and since  k≠i then π(xk) ≠π(xi)). Since p’=π(p) then the value 
of xk in q  is the same as the value of variable π(xk) in q’. On the other hand, the value of 
variable xi in  q  is obtained by negation of the value of xi in  p.  The value of variable  
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π(xi) in q’ is  obtained by negation of the value of π(xi) in p’.  Hence the values of 
variable xi  in q  and variable π(xi) in  q’  are the same. So  q’=π(q).  
 
Proof of Proposition 6. The idea of the proof was suggested to the author by Howard 
Wong-Toi [14]. 

 Denote by  K(p) the set of all points that are symmetric to point p i.e. that are in the 
same equivalence class. Denote by K(P) the union of the sets K(p), p∈P.  Extend the 
domain of transport function g from P to K(P) in the following way. Suppose  p’ is a 
point that is in K(P) but not in P.  Hence there is a point p ∈ P that is symmetric to p’  
and so  p’=π(p), π∈G.   Then we assign C’=π(C),  C=g(p) as the value of g  at p’. If there 
is more than one point of P  that is symmetric to p’, we pick any of them. 

To prove that F is unsatisfiable we show that K(P) is stable with respect to F and g: 
K(P) → F.  Let p’  be a point of  K(P).  The idea is to show that any point q’ from 
Nbhd(p’,g(p’)) is symmetric to a point of P and so q’ ∈ K(P).  This would mean that 
Nbhd(p',g(p')) ⊆ K(P) and so K(P) is stable.  

According to the definition of K(P) there is a point p of P  that is symmetric to p’ and 
so p’=π(p). Then from Proposition 5 it follows that for any point q of Nbhd(p,g(p)) there 
is a point q' ∈ Nbhd(p',g(p'))  such that q’=π(q). On the other hand, since P  is stable 
modulo symmetry then for any point q of  Nbhd(p,g(p)) there is a point q”  ∈ P 
symmetric to q  and so q=π*(q”), π*∈ G (π* may be equal to 1 ∈  G if q is in P). Then q’ 
= π(π*(q”)). Hence q' is symmetric to q” ∈ P and so  q’ ∈ K(P).  
 
Proof of Proposition 7.   Let p’ be a point of P’. Let q’  be a point of Nbhd (p’,g(p’)). 
Point  p’ is in P because P’ ⊆ P. Since P is a stable set then q’ ∈ P.  From the definition 
of set P’ it follows that if q’ is not in P’  then there is a point r’ ∈ P’ that is symmetric to 
q’. So each point q’ of  Nbhd(p’,g(p’)) is either in P’ or  there is a point of P’ that is 
symmetric to q’. 
 
Proof of Proposition 8.  Assume the contrary, i.e. that P is not stable.  Then there is a 
point p’ ∈ P (reachable from p modulo symmetry) such that  a point p” of  
Nbhd(p’,g(p’)) is not in P and P  does not contain a point symmetric to p”.  On the other 
hand,  p”  is reachable from  p’ and so it is reachable from p modulo symmetry. We have 
a contradiction. 
 
Proof of Proposition 9.  If part.   If Reachable(p ,g,G) contains a satisfying assignment 
then F is obviously satisfiable. 
Only if part.  Assume the contrary i.e. that F  is satisfiable and Reachable(p ,g ,G) does 
not contain a satisfying assignment. From Proposition 8 it follows that Reachable(p ,g ,G)  
is stable modulo symmetry  with respect to F and g. Then from  Proposition 6 it follows 
that F is unsatisfiable. We have a contradiction. 
 
Proof of Proposition 10.  Let p be a point from S(n ,m).  Consider the following two 
alternatives. 
1) p ∈ S1(n,m) . Then the matrix representation M(p) of p has at  least one row (say i-th 
row) consisting only of 0-entries. Point p falsifies at least one clause from H1(n,m). A 
falsified clause of H1(n,m) (say, clause C= ph(i,1)∨ph(i,2)∨ ... ∨ ph(i,m)) is assigned to p 
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by transport function g. Let us show that  Nbhd(p ,C) ⊆  S1(n,m) ∪ S2(n,m). Denote by p’ 
the point obtained from p by flipping the value of variable ph(i, j). By definition, no 
column of  M(p) contains more than one 1-entry. So we have two alternatives. First, if j-
th column of M(p) contains a 1-entry then the matrix representation M(p’) of p’ contains 
exactly one column (namely, j-th column) that contains two 1-entries.  Besides, all rows 
of M(p’)  still contain at most one 1-entry. (We have added a 1-entry to the i-th row that 
did not contain any 1-entries in M(p).) Then p’ ∈ S2(n ,m). Second, if j-th column of M(p) 
does not contain a 1-entry, then M(p’ ) does not contain columns having two 1-entries 
and so p’ ∈ S1(n ,m). 
2) p ∈ S2(n,m).   Then the matrix representation M(p) of p has exactly one column (say,  
j-th column) that has two 1-entries. Let us assume that j-th column M(p) has 1-entries in 
i-th and k-th rows.  Point p falsifies exactly one clause of H2(n ,m), namely, clause 
C=¬ph(i, j)∨¬ph(k, j). This is the clause that is assigned to p  by transport function g. Set 
Nbhd(p ,C) consists of two points obtained from p by flipping the value of  ph(i, j) or 
ph(k, j).  Let p’ be either  point of Nbhd(p ,C).  Matrix M(p’ ) does not have columns 
containing two 1-entries (because one 1-entry of j-th column has disappeared). Besides, 
M(p’ )  has at most one 1-entry per row. Then p’ ∈ S1(n,m). Hence Nbhd(p ,C) ⊆  S1(n,m).  

So in both cases Nbhd(p,C) ⊆  S1(n ,m) ∪ S2(n ,m). 
 
Proof of Proposition 11.  We prove the proposition by induction. Denote by Boundary(s) 
and Body(s) the Boundary and Body sets constructed after performing s steps of the 
algorithm. Denote by gs the transport function after performing s steps. Our induction 
hypothesis is that after performing s steps  of the algorithm set Boundary(s)  ∪ Body(s)  
is a subset of  S(n,m) and gs satisfies Definition 14 (at s points wherein the function gs is 
specified). First we need to check that the hypothesis holds for s=1. The starting point p  
is in S1(n,m). Besides, p falsifies only clauses from  H1(n,m).  So if we assign a clause C 
of H1(n ,m) as the value of g1 at point p, then function g1 satisfies Definition 14 .   

Now we prove that  from the fact the hypothesis holds after performing s steps of the 
algorithm, it follows  that it  also holds after s+1 steps of the algorithm. Let p’ be the 
point of Boundary(s) chosen at step s+1. First, let us show that transport function gs+1 
satisfies Definition 14. If p’ is in S1(n,m) then it falsifies only clauses from H1(n,m). So 
no matter which falsified clause is picked as the value of transport function g s+1 at point 
p’, gs+1 satisfies Definition 14. If p’ is in S2(n ,m) then it falsifies exactly one  clause of 
H2(n,m) and maybe some clauses of H1(n ,m). Our heuristic makes us select the falsified 
clause of H2(n,m) as the value of g at point p’.  So again transport function gs+1 satisfies 
Definition 14.   Then we can apply arguments of Proposition 10 to show that from  p’ ∈ 
S(n,m) it follows that Nbhd(p’,gs+1(p’)) is a subset of S(n ,m). Hence Boundary(s+1) ∪ 
Body(s+1) is a subset of  S(n,m). 
 
Proof of Proposition 12.  Since signatures of p and p’ are not identical modulo 
permutation then there is value  k ≤ n such that M(p) and M(p’) have different number of 
columns containing k  1-entries. On the other hand, no permutation π∈G(PH(n ,m)) can 
change the number of columns having  k 1-entries. Indeed, let M(p*) be the matrix 
representation of a point p*  of Bn∗m

.  Each permutation of G(PH(n ,m)) consists of a 
permutation of  m columns of M(p*) (i.e. holes) and n  rows of  M(p*) (i.e. pigeons). Any 
two entries e1,e2 of M(p*) that are initially in the same column (row) of M(p*) after any 
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permutation π∈G(PH(n ,m))  end up in the same column (row). (However the column 
(row) in which e1,e2  are put after permutation may be different from the initial column 
(row)). This means that if M(p*) has w columns with  k 1-entries then after any 
permutation  π∈G(PH(n ,m)) the number of such columns in M(π(p*)) is equal to w as 
well. So points p and p’ cannot be symmetric. 
 
Proof of Proposition 13.  Let us show that there are permutations π ,π’ ∈G(PH(n ,m))) 
such that q=π(p) and q=π’(p’),   i.e. that p and q and p’ and q are in the same equivalence 
class.  (This would mean that p and p’ have to be in the same equivalence class as well 
and so p and p’ are symmetric.) 

Since p ,p’  ∈S(n ,m) then both p and p’ have only columns containing no more than 
two 1-entries. Denote by n0(p),n1(p),n2(p) the numbers of columns of M(p) containing 
zero, one and two 1-entries respectively (n2(p) can be equal only to 0 or 1). Since 
signatures of p  and p’ are identical  modulo permutation then n0(p)= n0(p’),n1(p)= 
n1(p’),n2(p)= n2(p’).  Since we want to find q such that q=π(p) and q=π’(p’ ) then 
n0(q),n1(q),n2(q) must be the same as for points p and p’. Let q be the point of S(n ,m) such 
that in M(q) all the columns with one 1-entry go first, then they are followed by a column 
of two 1-entries (if  such a column exists in M(q)) and the rest of the columns of M(q) do 
not contain 1-entries. Besides, if j-th column  of M(q) contains only one 1-entry, then this 
1-entry is located in the j-th row. If j-th column of M(q) contains two 1-entries then they 
are located in j-th and (j+1)-th rows. It is not hard to see that each row of M(q) contains at 
most one 1-entry and so q ∈ S(n ,m).   

Point p can be transformed to q by a permutation π=π1π2 where π1 and π2 are defined 
as follows.  π1 is a permutation of columns of matrix M(p) that makes  n1(p)  columns 
having only one 1-entry  the first  columns of M(π1(p)). Besides, permutation π1 makes 
the column of M(p) that has  two 1-entries (if such  a column exists)  the (n1(p)+1) -th 
column of  M(π1(p)).  π2 is a permutation of rows of matrix M(π1(p)) that places the 1-
entry of  j-th column, 1≤ j ≤ n1(p) in the j-th row of M(π2(π1(p))). Besides, permutation π2 
places the two 1-entries of the (n1(p)+1)-th column of M(π1(p)) (if such a column with 
two 1-entries exists) in (n1(p)+1)-th  and (n1(p)+2)-th rows of M(π2(π1(p)))  respectively.  
Since all rows of M(π1(p)) have at most one 1-entry, permutation π2 always exists. It is  
not hard to see that M(π2(π1(p))) is equal to M(q) described above. The same procedure 
can be applied to point p’. 
 
Proof of Proposition 14.  First of all, it is not hard to see that points from S1(n ,m) and 
S2(n,m) have different signatures (for a point p of S2(n ,m) matrix M(p) has a column with 
two 1-entries, while points of S1(n,m) do not have such columns in their matrix 
representation). This means that no equivalence class contains points from both S1(n,m) 
and S2(n,m). For a point p of  S1(n ,m) matrix M(p) can have k columns with one 1-entry 
where k  ranges from 0 to m.  From Proposition 12 and Proposition 13 it follows that 
points with the same  value of k in their signatures are in the same equivalence class 
while points with different values of k in their signatures are in different equivalence 
classes. So there are m+1 equivalence classes in S1(n,m).   

For a point p of S2(n,m) matrix M(p) has exactly one column with two 1-entries. 
Besides, M(p) can have  k columns with one 1-entry where k  ranges from 0 to m-1.  
Points with the same value of k in their signatures are in the same equivalence class while 
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points with different value of k in their signatures are in different equivalence classes. So 
there are m equivalence classes in S2(n,m). Hence the total number of equivalence classes 
in S(n ,m) is 2∗ m+1. 
 
Proof of Proposition 15.  According to Proposition 14 set S(n ,m) consists of  2∗m+1 
equivalence classes. Let S’ be a set consisting of 2∗ m+1 points where each point is a 
representative of an equivalence class (one representative per class). According to 
Proposition 7 set S’ is stable with respect to F and g modulo symmetry. 
 
Proof of Proposition 16.  The algorithm in question can have only two kinds of steps. At 
a step of the first kind at least one point of Nbhd(p,g(p))  (where p is the point of  the 
Boundary picked at the current step) is added to the Boundary.  At a step of the second 
kind no new point is added to the Boundary (because each point of p’ of Nbhd(p ,g(p)) is 
either in Body ∪ Boundary or  the latter contains a point p” that is symmetric to p’ ). The 
number of steps of the first kind is less or equal to 2∗ m+1. Indeed, the total number of  
points contained in Body ∪ Boundary cannot exceed the number of equivalence classes 
(which is equal to 2∗ m+1) because no new point is added to Boundary if  it is symmetric 
to a point of Body ∪ Boundary. The number of steps of the second kind is also less or 
equal to 2∗m+1. The reason is that at each step of the second kind a point of the 
Boundary is moved to the Body and the total number of points that can appear in the 
Boundary is bounded by the number of equivalence classes in S(n ,m) i.e. by 2∗m+1. So 
the total number of steps in the algorithm is bounded by 2∗(2∗m+1). At each step of the 
algorithm it is checked if the current point is symmetric to a point of Body ∪ Boundary. 
The complexity of this operation is bounded by (2∗ m+1)∗f where 2∗m+1 is the maximum 
number of points set Body ∪ Boundary can have and f is the complexity of checking 
whether two points of Bn∗m are in the same equivalence class. So the time complexity of 
the algorithm is O(m2∗f). 
 

Appendix C . Some experimental results 
In this appendix we compute SSPs for two classes of CNF formulas: random  

formulas and pigeon-hole formulas. These classes were shown to be exponentially hard 
for general resolution [2,6]. Table 1 gives the results of computing SSPs for random CNF 
formulas from  the “hard” domain [8] (the number of clauses is 4.25 times the number of  
variables). For computing SSPs we used the algorithm described in Section 4 enhanced 
by the following heuristic. When picking  a clause to be assigned to the current point p' of 
the  Boundary at  Step 5,  we give preference to the clause C (falsified by p') for which 
the maximum number of points of  Nbhd(p',C) are already in Body or  Boundary. In other 
words, when choosing the clause C to be  assigned to p', we try to minimize the number 
of new points to  be added to the  Boundary.  

We generated 10 random CNFs of each size (number of variables). Table 1 gives the 
average values of the SSP size and the share (percent) of the  Boolean space taken by an 
SSP. It is not hard to see  that the SSP size  grows very quickly. So even for very small 
formulas it is very large. An interesting fact  though is that the share of the Boolean space 
taken by SSPs constructed by the described algorithm steadily decreases as the number of 
variables grows. 
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Such a poor performance  on random formulas can be explained by the following 
two flaws of the described algorithm. First,  an SSP is constructed point-by-point while  
computing an SSP in larger chunks of points (clustering “similar” points  of the Boolean 
space) should be much more efficient. Second, the algorithm looks for a set of points that 
is stable with respect to the initial set of clauses. On the other hand, if the algorithm is 
allowed to resolve clauses of the initial CNF, it may find a much smaller set of points that 
is stable with respect to a set of resolvents.  

Table 2 shows, however, that even point-by-point SSP computation can be efficient. 
In Table 2 we compare the performance of SAT-solver Chaff [9] and the proposed 
algorithm  of SSP computation on formulas PH(n+1,n) (i.e. n+1  pigeons and n holes). 
Chaff,  which is currently considered as the best SAT-solver based on the DPLL 
procedure [4], takes about 1 hour to finish the formula of 12 holes.  It is not hard to see 
that Chaff's runtime grows up at least 5 times as the size of the  instance increases just by 
one hole.  
 

Table 1. SSPs of “hard” random CNF formulas 
 

number 
of 

variables 

the size of 
SSP 

#SSP / #All_Space 
% 

10 430 41.97 
11 827 40.39 
12 1,491 36.41 
13 2,714 33.13 
14 4,931 30.10 
15 8,639 26.36 
16 16,200 24.72 
17 30,381 23.18 
18 56,836 21.68 
19 103,428 19.73 
20 195,220 18.62 
21 392,510 18.72 
22 736,329 17.55 
23 1,370,890 16.34 

 
For each of the formulas of Table 2 a set of points that was stable modulo symmetry 

was computed using the algorithm described in the end of Section 5. This algorithm was 
implemented in a program written in C++. To check whether two points of the Boolean 
space were symmetric the algorithm just compared their  signatures. Points with  idenical 
(modulo symmetry) signatures were assumed to be symmetric. This means that the 
runtimes for computing SSPs given in Table 2 do not take into account the time needed 
for symmetry checks. By a symmetry check we mean checking if a point p to be added to  
the  Boundary is symmetric to a point p' of the current set Boundary ∪ Body. A more 
general version of the algorithm,  instead of comparing  signatures would have to check if 
there is a symmetry of PH(n+1,n) that transforms p to a point of Boundary ∪ Body or 
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vice versa. Nevertheless,  Table 2 gives an idea of how easy formulas PH(n ,m) can be 
solved by contructing  an SSP modulo symmetry.  
 

Table 2. Solving PH(n+1,n) formulas 
 

Computing SSP modulo symmetry Number 
of holes 

Number of 
variables 

Chaff 
Time (sec.) Time (sec.) Size of SSP modulo 

symmetry 
8 72 2.2 0.05 17 
9 90 10.6 0.07 19 
10 110 51.0 0.09 21 
11 132 447.9 0.13 23 
12 156 3532.3 0.17 25 
15 240  > 1 hour 0.38 31 
20 420  > 1 hour 1.04 41 
40 1640  > 1 hour 13.33 81 

 
 
 


