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ABSTRACT
This paper introduces a persistent agent called skeptic who
supplies instances from well-defined equivalence classes to
test and benchmark SAT solvers. On such classes, met-
rics such as max/min ratio of time-to-solve should approach
the value of 1.0. Experiments suggested by the skeptic on
the instances of the same class show (1) the time-to-solve
max/min ratios for a given solver can exhibit a range from
2 to 1000 and beyond, and (2) max/min ratios for another
solver may be several orders of magnitude better, including
a significantly lower time-to-solve average value. Both of
these factors point out that (1) SAT solvers can not only be
much improved but also more reliably tested for any such
improvement, and (2) the intrinsic complexity or ‘hardness’
of SAT instances cannot be gauged reliably with the current
generation of SAT solvers.

The role of the skeptic is not to declare any particu-
lar SAT solver as the ‘best’. Rather, the main goal of this
paper is to have skeptic force imperfectly designed solvers
to exhibit erratic statistical behavior on input classes that
should induce uniform behavior. Ultimately, the role of the
skeptic is to be subsumed in a new methodology of experi-
mental design and performance evaluation of combinatorial
algorithms.

1. INTRODUCTION
The propositional satisfiability problem, SAT, is at the core
of the NP-hard problems and has been studied in the context
of automated reasoning, computer-aided design, computer-
aided manufacturing, machine vision, database, robotics,
scheduling, integrated circuit design, computer architecture
design, computer networking, etc. The Web has become the
universal resource to access large and diverse directories of
SAT problem instances [1], SAT discussion forums [2], and
SAT experiments [3], each with links to SAT-solvers that
can be readily downloaded and installed. Up-to-date survey
articles on the SAT problem and problem instances are also
readily available on the Web, e.g. [4, 5, 6].

New SAT solvers continue to be introduced, most recently
at DAC’2001 [7, 8, 9]. Two of these state-of-the-art solvers,
chaff [7] and satire [8], are publicly accessible and have
been installed within a benchmarking environment to be de-
scribed later in the paper. Some of the earlier SAT solvers

∗The experiments, as reported in this paper, could not have
taken place without SAT solvers such as chaff, satire, and
sato. We thank authors for the ready access and the excep-
tional ease of installation of these software packages.

are similarly available; we have added the frequently-cited
sato [10] and an unbiased textbook-level SAT-solver dp nat,
implemented as per pseudo-code in [11], which itself is based
on the well-known DPLL algorithm [12, 13].

We perform a number of experiments with these solvers.
The motivation for these experiments is not to declare any
particular SAT solver as the ‘best’. Rather, these experi-
ments are driven by an agent called skeptic who, in exper-
imental evaluation of algorithms, plays a role analogous to
that of an adversary in the worst-case complexity analy-
sis. An adversary devises an input that forces an algorithm
to perform badly enough to prove a lower bound (see, e.g.,
[14]). A skeptic, as the name suggests, is neither as malicious
nor as rigorous as an adversary. The skeptic’s purpose is to
force imperfectly designed algorithms to exhibit poor statis-
tical behavior (large confidence intervals) on input classes
that should induce uniform behavior. Ultimately, the role
of the skeptic is to be subsumed in a new methodology of
experimental design and performance evaluation of combi-
natorial algorithms. The case for such methods has already
been succinctly articulated in [15, 16] as well as demon-
strated experimentally in our earlier work [17, 18, 19, 20].

We first contrast the proposed approach with the up-to-
date benchmarking experiments with SAT solvers that are
being reported on the Web [3], the figure of merit being
‘time-to-solve’ on a particular PC. A sample of such a post-
ing is reproduced in the two left-most columns in Figure 1.
Three additional columns show ‘time-to-solve’ on our PC.
Given the tabulated results, it is tempting to jump to conclu-
sions such as (1) our PC is slower (relatively unimportant),
(2) chaff significantly outperforms both sato and satire on
the class of hole formulas [21] (very important – if true as
an average).

The skeptic in this paper views results in Table 1 only
as a starting point – no conclusions are to be drawn until
a sufficient number of experiments with instances from the

Table 1: Traditional benchmarking formats.

web-based report [3] local host report
reference time-to-solve(secs) time-to-solve(secs)

benchmark chaff sato chaff sato satire
————- —— —— —— —— ——

hole6 0.01 0.04 0.01 0.04 0.20
hole7 0.32 0.11 0.42 0.16 1.12
hole8 0.95 5.40 1.25 6.76 6.31
hole9 5.49 6.44 7.23 9.07 44.40
hole10 36.04 69.65 47.10 98.80 288.0

————- —— —— —— —— ——
sum-total 42.81 81.64 56.01 114.83 340.03
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(b) single instances from SATPLAN benchmark set

(a) single instances from DIMACS benchmark set
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One of the traditional approaches to reporting
results of SAT algorithm is the time-to-solve
performance of single instances of mostly un-
related benchmarks, such as the ones from the
DIMACS set [21] or the SATPLAN set [22]. In
addition, the tabulated results are averaged to
argue merits of each algorithm.

This paper marks a significant departure from
the traditional approach. We engage a skep-
tic agent to devise equivalence classes for each
benchmark of interest, and repeat the experi-
ments for up to 32 such instances. An observer
can thus deduce the most likely average case
performance of each algorithm for each refer-
ence benchmark, such as the instances marked
as ‘a’ (hanoi), ‘h’ (hole), ‘p’ (pret), ‘q’ (queen)
in DIMACS graph. The unmarked instances
refer to a subset from the ‘ii’ and ‘quasi’ data
sets. In the SATPLAN graph, we marked
only the instances of ‘u’ (bw large u) and ‘s’
(bw large s).

The example of instance hole10 (110 vari-
ables) in Table 1 reports 47.1, 98.8, and 288.0
seconds for chaff, sato, and satire. In Table 2,
skeptic reports the averages of 451 seconds for
chaff, 182 seconds for sato, while satire times
out at 1800 seconds. In addition, the max/min
values for chaff and sato are 736./47.1=15.6
and 206./98.8=2.09, respectively.

Figure 1: Performance experiments with SAT algorithms on single instances of mostly unrelated benchmarks.

equivalence class of hole-like formulas have been repeated
and analyzed. The simple sum-totals as shown presently
have no statistical significance, since values reported for the
same solver are single, unrelated measurements.

The primary role of the skeptic is to enforce statistical
significance and repeatability. Each reference problem in-
stance, such as hole8 in Table 1, is used by the skeptic to
generate one or more equivalence classes of closely related in-
stances, such as the isomorphism classes introduced later in
the paper. Within each isomorphism class, instances share
a common structure and solution landscape, so that the level
of variability of solver performance wrt to all instances from
such equivalence class signifies the level of erratic behavior
of the solver on such a class.

We expect to see wide variability in execution time for
the same solver across SAT instances having the same size
(assuming P 6= NP ). It would be natural to attribute
this variability to fundamental characteristics that make
some instances inherently easy and others inherently hard,
if not in general then at least for the algorithm in ques-
tion. The results obtained by our skeptic-based approach
suggest otherwise: SAT solvers exhibit wide variability even
within narrowly-defined classes based on a single instance.
We have encountered this phenomenon in problem domains
other than SAT: logic optimization, BDD variable ordering,
partitioning, routing and placement, and crossing number
in bigraphs [17, 18, 19, 20]. For the SAT problems, formu-
lated as cnf formulas, we introduce four isomorphism equiva-
lence classes, each derived by applying well-defined variable
permutation and complementation rules. These rules were
originally introduced to define equivalence classes of Boolean
functions [23].

In the remainder of the paper we illustrate how a simple
skeptic challenges up to five SAT solvers. Our observations

and the expectation of more elaborate skeptics in the fu-
ture raise questions such as: (a) How good are the state-
of-the-art solvers? and (b) What really distinguishes a hard
instance from an easy one? Significant opportunities are cre-
ated in SAT and other problem domains for (a) improving
solvers, and (b) establishing more rigorous benchmarks.

The paper is organized into five sections as follows: (2) Back-
ground and Motivation; (3) Equivalence Classes in CNF; (4)
Experimental Design and SAT; (5) Reports of Experiments;
(6) Summary and Conclusions.

2. BACKGROUND AND MOTIVATION
Traditionally, the performance of SAT solvers has been eval-
uated experimentally either in terms of randomly generated
instances of SAT problems, e.g. [24, 25], or structured in-
stances, such as the instances from the DIMACS set [21]
or the SATPLAN set [22]. Merits of either approach are
subject to on-going critique and examination [15], [16], [26],
[27], [28].

The traditional way to report results of SAT solvers is
the time-to-solve performance of single instances of a ref-
erence formula in conjunctive normal form (cnf). Table 1
represents the traditional organization of such an experi-
mental report. Results of more comprehensive experiments,
repeated on a subset of well-known benchmark formulas are
shown in the two graphs in Figure 1. Rather than reporting
time-to-solve results of experiments in the traditional tabu-
lar format, we depict them in two graphs. This representa-
tion, strictly for the convenience of visualizing the presence
of asymptotic trends, groups a set of benchmarks into a
family, such as hole (marked with ‘h’), queen (marked with
‘q’), hanoi (marked with ’a’), bw large u (unsat, marked
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Table 2: An example of a report on experimental results (in a format introduced by the skeptic).

costID = timeToSolve (seconds)

Class labels: name=hole08, type=PC, size=32

solverID initV minV meanV maxV max/min
————— ——– ——– ——– ——– ——–

sato 6.76 1.43 1.92 2.60 4.72
chaff 1.25 9.49 16.2 26.3 21.1

satire 6.31 411 1310 t’out > 285

Class labels: name=hole10, type=PC, size=32

solverID initV minV meanV maxV max/min
————— ——– ——– ——– ——– ——–

sato 98.8 158 181 206 2.09
chaff 47.1 320 451 736 15.6

satire 288 t’out t’out t’out > 6.25

costID = numberOfImplications

Class labels: name=hole08, type=PC, size=32

solverID initV minV meanV maxV max/min
————— ——– ——– ——– ——– ——–

satire 2.80e4 1.57e5 2.45e5 t’out > 11.3
chaff 5.95e4 1.79e5 2.61e5 3.45e5 5.80
sato 5.37e5 3.23e5 4.46e5 5.76e5 1.78

Class labels: name=hole10, type=PC, size=32

solverID initV minV meanV maxV max/min
————— ——– ——– ——– ——– ——–

chaff 4.58e5 1.60e6 1.89e6 2.25e6 1.41
sato 3.46e7 3.42e7 4.98e7 5.94e7 1.74

satire 1.84e5 t’out t’out t’out >> 1

NOTES: (1) For each class and for each costID, the solverID ordering is induced by sorting on meanV.
(2) The value of initV is included in computation of max/min ratio.
(3) The value of t’out (timeout) in these experiments has been set to 1800 seconds.
(4) A pointer to the original data and additional statistics, such as median, standard deviation,

confidence intervals of the mean, etc. is available under http://www.cbl.ncsu.edu/OpenExperiments/SAT/

with ’u’), and bw large s (sat, marked with ’s’).1 All pro-
grams chaff, satire, sato have been installed on a PC under
the Linux operating system and have been executed without
modification of the code or the benchmark instances posted
on the web. The time-out limit on how long a program can
run on a single instance has been set at 1800 seconds. An
inspection of graphs in Figure 1 suggests the following:

• For the hole family, satire appears out-ranked by the
other two solvers; there is a cross-over of chaff and
sato.

• For the queen family, sato appears to significantly out-
rank the other two solvers; there are cross-overs of
chaff and satire.

• For the hanoi family (marked with ‘a’), satire is the
only solver that does not time out on the instance of
hanoi5 (1931 variables), while all three solvers time
out on the instance of hanoi6 (4968 variables).

• For the bw large u family, chaff appears to out-rank
the other two solvers, and satire times out for the last
two instances (2729 and 5886 variables).

These quick visual observations should not be interpreted
as ones that hold any statistical significance. What should
be of interest is the most likely average time-to-solve for
each formula in the respective families, and the confidence
interval associated with each average. Such measurements
have not been done in the past since there was no well-
defined notion nor existence of an equivalence class for each
formula under test.

Consider now the experimental summary in Table 2 as
organized by the skeptic, after repeating 32 additional ex-
periments, one for each equivalence class instance. We re-
port solutions for class ‘PC’ in terms of two cost functions
(costIDs): time-to-solve and number-of-implications. As we
show later, both of these costs are highly correlated for all
solvers we tested. For each cost, we report results in five
columns: initV, minV, meanV, maxV, max/min. The col-
umn initV, represents the value reported by the solver for
the initial (reference) instance from which all others are to

1Instances of queen formulas are not part of the DIMACS
set, they are available as part of the sato distribution.

be derived; all other columns report statistics for the equiv-
alence class. Results in the four rightmost columns, unlike
conclusions based on the initV’s only, are significant as they
provide a number of platform-independent conclusions (for
this class of problems):

• sato definitely has fastest implementation of the impli-
cation engine (most implications per unit time).

• sato definitely requires the most implications to reach
a (non-SAT) decision, hence when the problem size (in
this family) increases, there will be a cross-over in the
timing performance when compared to chaff.

• satire requires the least number of implications to reach
a (non-SAT) decision, however the slow implementa-
tion of its implication engine limits the experiments
to instances with no more than 72 variables (here the
class of hole8 in the hole family).

These illustrative experiments do not represent an isolated
case of a cnf formula and its equivalence class. Rather, they
are representative of a universal phenomenon that will man-
ifest itself every time we let the skeptic agent design the ex-
periments with instances from the same equivalence class.

3. EQUIVALENCE CLASSES IN CNF
Most readers are familiar with the metaphor of ‘apples and
oranges’: one simply is not expected to make a fair compar-
ison between the two – they are ‘too different’. We borrow
from this metaphor before moving on to the notion of cnf
instances from the same equivalence class and an illustrative
performance evaluation of five SAT solvers on these classes.

Oranges and Equivalence Classes. Suppose we want
to evaluate two treatments, one in form of a gas, the other
in form of a liquid spray, that will extend the shelf life of
oranges. One thing is clear: we’ll need crates of oranges.
Before initiating a comprehensive series of experiments, we
shall separate oranges into crates in accordance with a well-
defined classification schema, e.g. such as the one shown in
Figure 2. Furthermore, we shall require three crates for each
diameter and skin type: one for treatment0 (no treatment),
one for treatment1 (gas), and one for treatment2 (liquid
spray). All crates are stored under identical climatic con-
ditions, and all oranges are tested for freshness at periodic
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orangeFamily
- diameter_A

- skinType_a
orange0
orange1
orange2
...
...

orange32
+ skinType_b
+ skinType_c

+ diameter_B
+ diameter_C
+ diameter_D

An experimental design using or-
anges may consider the classifica-
tion schema on the left. First, we
separate oranges by diameter and
consider diameters {A,B,C,D}.
Within each diameter class, we
separate oranges by the skin type,
e.g. {a, b, c}. We label a crate
with a given diameter and skin
type, mark a reference orange,
orange0, that meets all the re-
quirements of its specified di-
ameter and skin type, and fill
the crate with some 32 oranges,
each within the specified toler-
ance range for its diameter and
skin type, also marked by its in-
stance number.

Figure 2: An orange family classification schema and
the process of creating experimental subjects.

intervals. Statistical methods and tools are used to evalu-
ate the effectiveness of each treatment. The significance of
treatment0 cannot be overstated; we’ll define its counterpart
when designing experiments with SAT solvers.

While we may consider the same treatments on apples,
we most likely will need to develop a distinctive classifica-
tion schema, specific to apple brands, before designing the
experiments with apples.

A CNF Formula and Its Equivalence Classes. The
hardness of a SAT problem in a cnf formula is encoded in
the structure of the cnf representation and the total num-
ber of satisfying assignments for the function the formula
represents. Both may require exponential time and space
to characterize exactly. However, it is simple to create an
isomorphism class of cnf formulas, all of the same hardness
as the given reference formula.

Our approach is based on the notion of equivalence classes
of Boolean functions {Fj} as defined in [23] and illustrated
in Figure 4(a). Each cnf formula Fj is consists of a set of
clauses and each clause is a set of literals. A literal is ei-
ther a positive integer i, denoting the variable xi, or −i,
denoting xi, the complement of xi. While the problem of
deciding whether a pair of functions Fj1 and Fj2 belongs to
{Fj} is NP-hard, the problem of generating any number of
functions in {Fj} is simple. Here, we designate Fj as the
reference formula and re-write it in accordance with well-
defined transformations (variable permutation and comple-
mentation), giving rise to four distinct equivalence class
types formulated in Figure 3: I, P C, and PC.

An Example. A specific example of the 6-variable, 12-
clause formula in Figure 4(b) illustrates the simple relation-
ship between the four solution vectors of the reference for-
mula and the solution vectors of each formula in the respec-
tive equivalence class.

The classes we define are based on isomorphisms in the
following sense. For any formula F having n variables, let
H(F ) be the n-dimensional hypercube with nodes corre-
sponding to all possible variable assignments (with the usual
graph-theoretic interpretation — two nodes are adjacent if
their labels differ in one bit), and with nodes whose labels
represent satisfying assignments colored. We say that two
formulas F1 and F2 are structurally equivalent if H(F1) and
H(F2) have an automorphism [31] that preserves the color-
ing.
Skeptic’s Claim. If F1 and F2 are structurally equiva-
lent, then a good SAT solver should take roughly the same

• I-class (identity) — variable names are pre-
served. Clauses and literals within a clause are
randomly permuted.
Property: each solution vector is identical to the
reference formula solution vector.

• P-class (permutation) — variable names are per-
muted randomly, as are clauses and literals.
Property: each solution vector is a permutation
of the reference formula solution vector.

• C-class (complement) — variable names are pre-
served; variables are complemented randomly.
Clauses and literals within a clause are randomly
permuted.
Property: each solution vector is the reference
formula solution vector, with the same bits com-
plemented.

• PC-class (permutation and complement) —
variable names are permuted randomly and vari-
ables are complemented randomly. Clauses and
literals within a clause are randomly permuted.
Property: each solution vector is a permutation
of the reference formula solution vector, with the
same bits complemented.

Figure 3: Rewriting rules to create four isomor-
phism classes of cnf formulas.

amount of time to solve F1 as F2 (and the same applies to
other measures as well).

We next describe an experiment with five SAT solvers.

SAT Solvers and Equivalence Class Instances. A total
of five SAT solvers, chaff, satire, sato, satoL and dp0 nat,
were applied to 32 instances in each of the four equivalence
classes of the reference formula in Figure 4(b).

Each solver is a variation of DPLL algorithm [12, 13] –
they differ only in choice of variable ordering and backtrack-
ing strategy. The sato solver can be run under two solverIDs:
sato that relies on a data structure of tries, and satoL that
relies on a data structure of linked lists. The solver dp0 nat
orders variables based solely on the input appearance and
uses the simplest possible backtracking strategy; it thus cor-
responds to treatment0 (no treatment) in the analogy of the
experiments with oranges. The results of all experiments are
summarized in Figure 4(c). It is important to note that, ex-
cept for the solver chaff, these results foretell the responses
we observe for instances of much larger formulas in sub-
sequent experiments with equivalence classes. Overall, we
make the following brief observations:

• For solver chaff, the variance of 0 for P- and PC-
class is uncharacteristic; large variances are observed
for both of these classes in general, compared to vari-
ances for I- and C-class.

• For solver satire, the near-equal variance for all four
classes is characteristic.

• For solver sato, the variance of 0 for I- and P-class is
characteristic; relatively small variances are observed
for both of these classes in general, compared to much
larger variances for C- and PC-class.

• For solver satoL, the variance of 0 for I- and P-class is
characteristic; relatively small variances are observed
for both of these classes in general, compared to much
larger variances for C- and PC-class. As shown here,
satoL will typically have smaller standard deviation
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(a) Equivalence classes: Boolean functions and cnf formulas.
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A cnf formula consists of a set of clauses and each clause is a
set of literals. A literal is either a positive integer i, denot-
ing the variable xi, or −i, denoting xi, the complement of xi.
As shown on the left, the formula also represents a Boolean
function Fj as a 2-level dag with inputs {x1, . . . , xn} at level 0,
OR-gates {C1, . . . , Cm} with inverting/non-inverting inputs at
level 1, and a single AND gate with output Fj .

Equivalence classes {Fj} of Boolean functions, each of size
n!2n, have been analyzed for their invariants in [23]. Here,
we illustrate the construction of such classes with the cascaded
instances of a permutation and a complementation network.

(b) Example: instances from four equivalence classes of a 6-variable, 12-clause formula v06 0004.

Four satisfying assignments of each instance are simple transformations of the reference formula assignments.

Reference formula: {-1 -2} {-1 -3} {-1 -4} {-1 -5} {-1 -6} {-2 -3} {-2 -4} {-3 -4} {-5 -6} {1 2 3} {4 5 6} {-1 2 -3 4}
solution vectors: (001001, 001010, 010001, 010010)

I-class formula: {-1 -5} {-4 -2} {-1 -3} {-1 -2} {-4 -1} {2 3 1} {-2 -3} {5 4 6} {2 -1 4 -3} {-4 -3} {-5 -6} {-1 -6}
solution vectors: (001001, 001010, 010001, 010010)
transformations: none, solutions are reference formula solutions.

P-class formula: {-4 -2} {-5 -6} {-3 -1} {-5 -4} {-6 -2} {1 3 5} {-4 -1} {6 2 4} {5 -4 -2 6} {-4 -3} {-5 -2} {-4 -6}
solution vectors: (011000, 110000, 001001, 100001)
transformations: variable permutation 462513 is applied to reference formula solutions.

C-class formula: {4 -5 6} {1 -4} {-6 1} {-2 -3} {-6 5} {-4 -2} {2 -3 4 1} {-1 3 2} {1 -3} {-3 -4} {5 1} {1 -2}
solution vectors: (101011, 101000, 110011, 110000)
transformations: variable complementation of (1, 5) is applied to reference formula solutions.

PC-class formula: {-5 4} {-6 5 2 -4} {2 -3} {-6 2} {2 -5} {4 2} {-6 -5} {-2 6 -4} {-1 2} {-3 -1} {5 3 1} {4 -6}
solution vectors: (110101, 011101, 110000, 011000)
transformations: variable permutation 246531 and complementation of (2, 4) is applied to reference solutions.

(c) Experiment: number-of-implications statistics for equivalence classes of formula v06 0004.
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(a) performance of 'dp0_nat' on four equivalence classes of formula v06_s0004

(b) performance of 'satire' on four equivalence classes of formula v06_s0004

equiv. chaff satire sato satoL dp0 nat
class mean/std mean/std mean/std mean/std mean/std

I 6.00/0.00 5.97/2.42 3.00/0.00 3.00/0.00 3.81/1.26
C 6.00/0.00 5.06/2.29 7.40/1.34 4.84/2.03 3.78/1.66
P 6.00/0.00 6.69/2.73 3.00/0.00 3.00/0.00 4.06/1.56

PC 6.00/0.00 5.28/2.56 6.56/1.43 4.66/2.07 3.75/1.24

As we demonstrate in the exper-
iment section of this paper, the
number of implications is a mea-
sure closely correlated with exe-
cution time for DPLL-based SAT
solvers.

Even on this small illustrative
data set, counting the number of
implications clearly differentiates
between all five solvers: chaff [7],
satire [8], sato and satoL [10], and
dp0 nat, our own vanilla implemen-
tation of the DPLL algorithm [12,
13].

Here, instances of isomor-
phic 6-variable, 12-clause cnf for-
mulas can induce large variabil-
ity in performance: from 2 im-
plications/solution to 11 implica-
tions/solution. We discovered, on
much larger formulas, comparable
and much larger max/min perfor-
mance ratios, both in time-to-solve
and number-of-implications.

Figure 4: On generation of equivalence classes of cnf formulas – a method and an experiment.
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benchm_SATcnf
+ bw_large_s
+ bw_large_u

...

...
+ queen_medium
- queen_small

- @references
queen04_v00016.cnf
queen04_v00025.cnf
queen04_v00036.cnf
...
...

- queen_04_v00016
- queen04_v00016_C

i0000.cnf
i0001.cnf
i0002.cnf
...
...

+ queen04_v00016_I
+ queen04_v00016_P
+ queen04_v00016_PC

+ queen_04_v00025
+ queen_04_v00036

...

...
+ sched_s
+ sched_u

...

...

results_SATcnf
+ chaff
+ dp0_nat

...

...
+ satire
- sato

+ bw_large_s
+ bw_large_s

...

...
+ queen_medium
+ queen_small

- @references
sato.raw

- queen_04_v00016
- queen04_v00016_C

sato.raw
+ queen04_v00016_I
+ queen04_v00016_P
+ queen04_v00016_PC

+ queen_04_v00025
+ queen_04_v00036

...

...
+ sched_s
+ sched_u

...

...
+ satoL

...

Two components of the experimental design schema
(EDS) specific to SATcnf problems are shown on the
left: benchm SATcnf contains families of cnf reference
formulas and corresponding equivalence class formulas;
results SATcnf contains any number of solver-specific di-
rectories of results, each organized as per benchm SATcnf
schema, except that in place of formula instance files,
solver-reported results are filed in their native ‘raw’ for-
mats. This organization allows for simple additions of new
benchmark families and archival and retrieval of existing
and new experimental results, generated by new solvers.

The comprehensive SATcnf experiment can now be invoked
with few lines of code in Tcl [29, 30]:

# inputs:
set timeOutSeconds "1800"
set benchmList "bw large s bw large u queen small"
set solverList "chaff sato satoL"

# outputs (coordinated by encap SATcnf)
set resultsDir "results SATcnf"

foreach benchmID $benchmList {
set filePaths [findFiles $benchmID *.cnf]

foreach solverID $solverList {
encap SATcnf $timeOutSeconds $solverID \
$benchmID $filePaths $resultsDir

}
}

For each solverID and each class directory, ’raw’ re-
sults of experiments such as above are saved in files la-
beled as ’solverID.raw’ in appropriate directories under
results SATcnf. These results are post-processed by utili-
ties for a number of different objectives (see text).

Figure 5: SATcnf experimental design schema (EDS) and the comprehensive SATcnf experiment.

and smaller mean in number-of-implications as well as
time-to-solve.

• For solver dp0 nat, the near-equal variance for all four
classes is characteristic, and contrary to this exam-
ple, it can exceed the mean and the variance of other
solvers.

Since some solvers appear designed to suppress the variabil-
ity of performance induced by instances from some of the
classes, the only class where all solvers can be compared
fairly is the PC-class. However, all four classes are neces-
sary to completely describe the properties of the solver un-
der test. The presence of bias in the solver can decrease its
performance potential – chaff, satire, sato, and satoL have
been noted to exhibit erratic behavior on some of the larger
formula classes.

On Solver Cost Distribution. Since instances from the
four equivalence classes in this section effectively represent
the same formula, the ideal solver should return a solution
with the same or nearly the same cost, regardless of which
instance has been chosen, i.e. the cost distribution should
be normal with zero or near-zero variance. A large variance
is an indicator that the solver is behaving erratically on few
or several instances from the class – and not that the choice
of the instance is inappropriate or ‘hard’ !

4. EXPERIMENTAL DESIGN AND SAT
A well-defined schema is required to manage large volumes
of input data sets and repeated executions of several solvers,
each writing results in solver-specific formats. Two compo-
nents of the experimental design schema (EDS) that evolved
in this work are shown in Figure 5: benchm SATcnf archives
all input data sets, results SATcnf archives results of ev-
ery experiment generated by each solver. The initial results

are in solver-specific formats and are readily accessible for
any number of post-processing steps by various utilities that
perform tasks such as verification of reported solutions and
tabulation of results in a uniform format that can be read
by most spreadsheet and charting programs, displayed on
the Web, etc.

Input Data Sets. The structure of benchm SATcnf is simi-
lar to the classification schema illustrated for oranges in Fig-
ure 2. We group reference formulas of structurally-related
instances of increasing size into families so we can study the
asymptotic performance of SAT algorithms. Reference for-
mulas in each family should be either all unsatisfiable or all
satisfiable, the basic structure of clauses should be the same,
and size increase from one formula to the next should be
(roughly) the same multiplicative constant. At least three
or more of such reference formulas should define a family.
However, as we note in Figure 6, there can also be exceptions
to this rule. For example, the family ‘aTutorialCNF’ has a
tutorial purpose only, and the families under ‘random3sat’
represent different instances of the same size, and as such
cannot be used to study solver asymptotic behavior. See
next section for detailed description of archives in Figure 6
and associated experiments.

For each reference formula, e.g. queen 04v00016.cnf,
we may generate a number of equivalence classes such as
queen 04v00016 C, with instances i0000.cnf, i0001.cnf,
i0002.cnf, . . . , etc. By convention, we maintain the instance
i0000.cnf strictly as a copy of the reference formula, e.g.
queen 04v00016.cnf. We can thus readily access the value
of initV (under results SATcnf) that we report in the first
column of tabulated results, such as shown in Table 2.

Comprehensive SATcnf Experiment. The comprehen-
sive SATcnf experiment can be invoked with a few lines of
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As per schema in Figure 5, there are currently 32
to 128 instances of the ‘PC’ isomorphism (equiva-
lence) class for each reference instance listed below.
For some formulas, there are up to four equivalence
classes, each of size at least 32. A pointer to the
compressed archive for each family is available under
http://www.cbl.ncsu.edu/OpenExperiments/SAT/.

aTutorialCNF/ (family directory)

@references/ vars clauses sat? notes

v06_s0004.cnf 6 12 yes See paper.
v10_s0000_sched.cnf 10 23 no ”
v10_s0012_ramsey.cnf 10 25 yes See [10].

bw_large_s/ (family directory)

@references/ vars clauses sat? notes

bw_large_a_s.cnf 459 4,675 yes See [22].
bw_large_b_s.cnf 1,087 13,772 yes ”
bw_large_c_s.cnf 3,016 50,457 yes ”
bw_large_d_s.cnf 6,325 131,973 yes ”

bw_large_u/ (family directory)

@references/ vars clauses sat? notes

bw_large_a_u.cnf 340 3,294 no See [22].
bw_large_b_u.cnf 920 11,491 no ”
bw_large_c_u.cnf 2,729 45,368 no ”
bw_large_d_u.cnf 5,886 122,412 no ”

hole_medium/ (family directory)

@references/ vars clauses sat? notes

hole06_v00042.cnf 42 133 no See [21].
hole07_v00056.cnf 56 204 no ”
hole08_v00072.cnf 72 297 no ”
hole09_v00090.cnf 91 415 no ”
hole10_v00110.cnf 110 561 no ”
hole14_v00210.cnf 210 1,685 no ”

hole_small/ (family directory)

@references/ vars clauses sat? notes

hole02_v00006.cnf 6 9 no See [21].
hole03_v00012.cnf 12 22 no ”
hole04_v00020.cnf 20 45 no ”
hole05_v00030.cnf 30 81 no ”

hanoi/ (family directory)

@references/ vars clauses sat? notes

hanoi03.cnf 249 1,512 yes See [21].
hanoi04.cnf 718 4,934 yes ”
hanoi05.cnf 1,931 14,468 yes ”
hanoi06.cnf 4,968 39,666 yes ”

hanoi_trim/ (family directory)

@references/ vars clauses sat? notes

hanoi03_v00171.cnf 171 1,068 yes See paper.
hanoi04_v00541.cnf 541 3,912 yes ”
hanoi05_v01500.cnf 1,500 12,063 yes ”
hanoi06_v03864.cnf 3,864 33,753 yes ”

queen_medium/ (family directory)

@references/ vars clauses sat? notes

queen09_v00081.cnf 81 1,065 yes See [10].
queen10_v00100.cnf 100 1,480 yes ”
queen14_v00196.cnf 196 4,200 yes ”
queen16_v00256.cnf 256 6,336 yes ”
queen19_v00361.cnf 361 10,735 yes ”

queen_small/ (family directory)

@references/ vars clauses sat? notes

queen04_v00016.cnf 16 80 yes See [10].
queen05_v00025.cnf 25 165 yes ”
queen06_v00036.cnf 36 296 yes ”
queen07_v00049.cnf 49 483 yes ”
queen08_v00064.cnf 64 736 yes ”

rand3sat_250-1065_s/ (family directory)

@references/ vars clauses sat? notes

uf250-1065_027.cnf 250 1,065 yes See [6]
uf250-1065_034.cnf 250 1,065 yes and
uf250-1065_087.cnf 250 1,065 yes this paper.

rand3sat_250-1065_u/ (family directory)

@references/ vars clauses sat? notes

uuf250-1065_046.cnf 250 1,065 no See [6]
uuf250-1065_074.cnf 250 1,065 no and
uuf250-1065_090.cnf 250 1,065 no this paper.

sched_medium_s/ (family directory)

@references/ vars clauses sat? notes

sched03s_v00095.cnf 95 495 yes See paper.
sched04s_v00140.cnf 140 892 yes ”
sched05s_v00412.cnf 412 4,338 yes ”
sched06s_v00828.cnf 828 12,024 yes ”
sched07s_v01386.cnf 1,386 25,671 yes ”

sched_medium_u/ (family directory)

@references/ vars clauses sat? notes

sched03u_v00093.cnf 93 493 no See paper.
sched04u_v00138.cnf 138 890 no ”
sched05u_v00410.cnf 410 4,336 no ”
sched06u_v00826.cnf 826 12,022 no ”
sched07u_v01384.cnf 1,384 25,669 no ”

sched_small_s/ (family directory)

@references/ vars clauses sat? notes

sched00s_v00012.cnf 12 26 yes See paper.
sched01s_v00031.cnf 31 98 yes ”
sched02s_v00059.cnf 59 255 yes ”

sched_small_u/ (family directory)

@references/ vars clauses sat? notes

sched00u_v00010.cnf 10 23 no See paper.
sched01u_v00029.cnf 29 96 no ”
sched02u_v00057.cnf 57 253 no ”

Figure 6: Family directories and reference cnf formulas from which isomorphism classes have been generated.
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code in Tcl [29, 30], shown in Figure 5. The essential input
variables are timeOutSeconds, benchmList and solverList.
Once file paths to all formula instances (in a given family)
have been generated, a solver encapsulation program en-
cap SATcnf is invoked and the designated solver repeatedly
executed on all formula instances.

While not shown here, additional input variables expand
the features of the SATcnf experiment. For example, ex-
periments may be conducted only on user-specified subsets
of class instances under the benchm SATcnf schema. For
each solverID and each class directory, ’raw’ results of ex-
periments in solver-specific formats are written to files in
designated directories under results SATcnf, each one la-
beled as ’solverID.raw’. These results are post-processed by
utilities for a number of objectives we describe next.

Results Archives. In any SATcnf experiment, benchm-
List may contain the (top-level) name of the family direc-
tory or any of its subdirectories. However, items in the
solverList can only reference a specific solverID. The schema
of results SATcnf represents the home directory of solver-
reported results, each under its own solverID. Under each
solverID, results are organized parallel to schema of
benchm SATcnf – with exception that in place of formula in-
stance files, solver-reported results are filed in their native
‘raw’ formats – as ’sato.raw’, shown for solverID=sato in
Figure 5. This organization allows for simple additions of
new benchmark families and archival and retrieval of exist-
ing and new experimental results, generated by new solvers.

Essential utilities that we routinely invoke to generate
equivalence classes, to execute any SAT solver, and to post-
process results of experiments include:

• cnfFormula2Class, a program that reads a cnf refer-
ence file and class designation parameters. The pro-
gram creates the designated directories and formula
class instances in cnf format.

• encap SATcnf, a solver encapsulation program that
reads solverID and class-specific formula instances, ex-
ecutes the solver, and returns for each class directory
visited, a solver-specific file of results as ‘solverID.raw’.

• solverVer, a verification program that reads the for-
mula instance, the reported solution in ‘solverID.raw’,
and outputs a verification report as ‘solverID.ver’. Here,
we find confirmation that the reported solution indeed
satisfies the formula.

• solverPP, a program that reads a file ’solverID.raw’
and returns a standard spreadsheet report of raw data
as a file ‘solverID.tab’, and essential statistics of raw
data as a file ‘solverID.stat’. For each costID such
as time-to-solve, number-of-implications, number-of-
backtracks, etc., results listed in the ‘stat’ file currently
include: initial value (associated with the reference for-
mula) median value, mean value, standard deviation,
minimum value, maximum value, 95% confidence in-
terval of the mean (based on the t-statistics [32]), the
standard coefficient of variation, and the max/min ra-
tio. The computation of max/min ratio always in-
cludes not only the minimum and maximum values
generated from class instances but also the initial value
associated with the reference formula.

• solverSum, a program that reads, from a designated lo-
cation in the results SATcnf schema, any number of
statistics summary files with extension ‘stat’ and out-
puts a file as a statistical summary generically named
as ’solvers.summ’. This file may contain data such as
shown in Table 2.

Additional utilities may be added in the future, such as post-
processors to write data directly for a commercial statistics
packages such as JMP [33] or post-processors to prepare data
for multiple-comparison analyses such as discussed in [34].

The experimental design schema for the SATcnf problem
described here enabled us to develop a cross-platform envi-
ronment that

• facilitates the use of the experimental design method-
ology,

• supports replication of our current and future experi-
mental results,

• may encourage other researchers to participate by con-
tributing reference formulas and solvers,

• automates the experiments in a way that minimizes
the potential for human error.

To access compressed archives of input data sets under
benchm SATcnf, raw results and statistical summary under
results SATcnf, and the cross-platform utilities, reader is
invited to follow the links posted on the home page

http://www.cbl.ncsu.edu/OpenExperiments/SAT/

5. REPORTS OF EXPERIMENTS
Our initial SAT experiments replicated the experiments on
well-known subsets of benchmark formulas, using three read-
ily available SAT solvers. Results are discussed in Section
2 and summarized in Figure 1. Following suggestions from
the skeptic, we devised four equivalence classes for each ref-
erence formula, and repeated experiments on formula in-
stances from each class, at least 32 formulas per class. Ex-
periments with up to five solvers are reported in great de-
tail in the illustrative example of a 6-variable, 12-clause ref-
erence formula and its class instances in Figure 4. These
small-scale experiments provide a basis for the experimental
design strategy and experiments described in this section.

For completeness, we list the five solvers in terms of re-
spective solverIDs:

• chaff, as described in [7].

• dp0 nat, implemented as per pseudo-code in [11], which
itself is based on the well-known DPLL algorithm [12,
13]. This solver orders variables solely on the order
in which they appear in the input and uses the sim-
plest possible backtracking strategy. It is implemented
in Tcl [29, 30] (an interpreted language), so only its
number-of-implications as costID may be compared to
other implementations.

• satire, as described in [8].

• sato, as described in [10], implemented with a data
structure based on tries.

• satoL, as described in [10], implemented with a data
structure based on linked lists.

The grouping of reference formulas into families and the or-
ganization of equivalence classes has been discussed in Fig-
ure 5. The actual formulas and classes we used in the exper-
iments reported in this paper are shown in Figure 6. While
families in Figure 6 are listed in the alphabetical order (as
they appear on the Web site), we describe each family and
related experiments in a logical order that follows the flow
of the paper.

Having created and analyzed instances of I-, C-, P-,
and PC-equivalence classes from hole and queen families,
we recognized that in order to compare all algorithms on an
equal basis, it is sufficient to create only PC-classes, hence
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Table 3: Results reported for random and isomorphism class instances from uf250-1065 and uuf250-1065.

costID = timeToSolve (seconds)

(a) * * * * * * * sat instances * * * * * * * *

Class labels: name=uf250-1065, type=R, size=100

solverID initV minV meanV maxV max/min
————— ——– ——– ——– ——– ——–

satoL – 0.13 17.1 65.5 504
sato – 0.07 105 1240 17800

chaff – 0.10 116 1320 13200

Class labels: name=uf250-1065-027, type=PC, size=128

solverID initV minV meanV maxV max/min
————— ——– ——– ——– ——– ——–

satoL 46.3 0.23 26.4 56.0 243
chaff 115 9.11 69.6 355 39.0
sato 23.1 0.13 92.7 678 5220

Class labels: name=uf250-1065-034, type=PC, size=128

solverID initV minV meanV maxV max/min
————— ——– ——– ——– ——– ——–

satoL 6.26 0.15 26.3 56.6 377
chaff 552 3.29 199 1310 398
sato 224 1.19 223 1000 840

Class labels: name=uf250-1065-087, type=PC, size=128

solverID initV minV meanV maxV max/min
————— ——– ——– ——– ——– ——–

satoL 51.6 0.580 30.9 66.4 114
sato 94.5 0.160 148 1100 6880

chaff 1320 114 655 1530 13.4

(b) * * * * * * * unsat instances * * * * * * *

Class labels: name=uuf250-1065, type=R, size=100

solverID initV minV meanV maxV max/min
————— ——– ——– ——– ——– ——–

satoL – 14.9 45.3 95.1 6.38
sato – 58.2 494 1770 30.4

chaff – 103 900 t’out1 > 17.5

Class labels: name=uuf250-1065-090, type=PC, size=128

solverID initV minV meanV maxV max/min
————— ——– ——– ——– ——– ——–

satoL 22.4 21.8 22.7 24.0 1.10
sato 55.8 21.4 84.4 308 14.4

chaff 103 89.2 131 245 2.75

Class labels: name=uuf250-1065-074, type=PC, size=128

solverID initV minV meanV maxV max/min
————— ——– ——– ——– ——– ——–

satoL 36.1 34.6 36.4 38.1 1.10
sato 431 81.0 304 1140 14.7

chaff 504 400 609 780 1.95

Class labels: name=uuf250-1065-046, type=PC, size=128

solverID initV minV meanV maxV max/min
————— ——– ——– ——– ——– ——–

satoL 75.1 65.0 75.9 83.2 1.28
sato 952 440 1210 3420 7.77

chaff 2078 1912 2424 t’out2 > 1.88

costID = numberOfImplications

(a) * * * * * * * sat instances * * * * * * * *

Class labels: name=uf250-1065, type=R, size=100

solverID initV minV meanV maxV max/min
————— ——– ——– ——– ——– ——–

sato – 7900 1.95e6 9.55e6 1210
satoL – 1.49e4 2.17e6 8.18e6 549
chaff – 1.92E3 2.99e6 1.87e7 9740

Class labels: name=uf250-1065-027, type=PC, size=128

solverID initV minV meanV maxV max/min
————— ——– ——– ——– ——– ——–

sato 1.05e6 1.40e4 2.00e6 6.81e6 486
chaff 4.48e6 8.14e5 2.84e6 9.40e6 11.5
satoL 5.93e6 2.79e4 3.36e6 7.09e6 254

Class labels: name=uf250-1065-034, type=PC, size=128

solverID initV minV meanV maxV max/min
————— ——– ——– ——– ——– ——–

sato 3.88e6 1.07e5 3.25e6 8.19e6 76.5
satoL 7.88e5 1.87e4 3.48e6 7.18e6 383
chaff 1.18e7 4.11e5 4.40e6 1.74e7 42.3

Class labels: name=uf250-1065-087, type=PC, size=128

solverID initV minV meanV maxV max/min
————— ——– ——– ——– ——– ——–

sato 2.42e6 1.56e4 2.42e6 8.85e6 567
satoL 6.56e6 7.57e4 3.90e6 8.32e6 110
chaff 1.81e7 4.45e6 1.19e7 2.04e7 4.58

(b) * * * * * * * unsat instances * * * * * * *

Class labels: name=uuf250-1065, type=R, size=100

solverID initV minV meanV maxV max/min
————— ——– ——– ——– ——– ——–

sato – 1.65e6 5.32e6 1.08e7 6.55
satoL – 1.85e6 5.70e6 1.22e7 6.59
chaff – 4.06e6 1.44e7 t’out1 > 6.0

Class labels: name=uuf250-1065-090, type=PC, size=128

solverID initV minV meanV maxV max/min
————— ——– ——– ——– ——– ——–

sato 1.60e6 9.37e5 2.08e6 4.16e6 4.44
satoL 2.74e6 2.65e6 2.78e6 2.92e6 1.10
chaff 4.06e6 3.70e6 4.51e6 6.05e6 1.64

Class labels: name=uuf250-1065-074, type=PC, size=128

solverID initV minV meanV maxV max/min
————— ——– ——– ——– ——– ——–

sato 5.13e6 2.13e6 4.11e6 8.10e6 3.80
satoL 4.54e6 4.33e6 4.55e6 4.77e6 1.10
chaff 1.08e7 3.98e6 1.24e7 1.43e7 3.59

Class labels: name=uuf250-1065-046, type=PC, size=128

solverID initV minV meanV maxV max/min
————— ——– ——– ——– ——– ——–

sato 8.29e6 5.71e6 8.97e6 1.53e7 2.68
satoL 9.44e6 8.29e6 9.57e6 1.05e7 1.27
chaff 2.52e7 2.32e7 2.67e7 t’out2 > 1.18

NOTES: (1) For each class and for each costID, the solverID ordering is induced by sorting on meanV.
(2) The value of initV is included in computation of max/min ratio.
(3) The timeout values have been set to t’out1 = 1800 seconds and t’out2 = 3600 seconds.
(4) For both random classes, values of initV have been set to ‘–’ since instances

from these classes relate to no reference formula.
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(a) Costs reported by satoL (l) and chaff (r) for 100 random class instances of (sat) uf250-1065.
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(b) Costs reported by satoL (l) and chaff (r) for 128 PC class instances of (sat) uf250-1065-087 PC.
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(c) Costs reported by satoL (l) and chaff (r) for 100 random class instances of (unsat) uuf250-1065.
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(d) Costs reported by satoL (l) and chaff (r) for 128 PC class instances of (unsat) uuf250-1065-074 PC.
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Figure 7: Histograms and correlations: random/isomorphism class instances from uf250-1065 & uuf250-1065.
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unless stated otherwise, only instances from the PC-class
will be analyzed. Without exception, there are always 32
instances (or more) in each equivalence class that we an-
alyze. Asymptotic trends in this paper are reported with
respect to average performance within the PC-classes of
the instances of a family, and, where we need to bring out
an important point, also the P-classes. All families we in-
vestigated illustrate key differences among solvers and offer
insights for further study.

The aTutorialCNF family. We devised this family to
illustrate the construction of equivalence classes and a num-
ber of insights that can be gained already on such simple
formulas when various SAT solvers are applied. We argue
the merits of the approach in Section 3, using the case of
formula v06 s0004.cnf.

The hanoi families. The hanoi families consists of formu-
las that represent the classical tower of Hanoi problem. All
formulas are satisfiable. Two directories are listed in Figure
6: hanoi and hanoi trim. The first one contains reference
formulas and equivalence classes of the original instances
[21]. For the second directory, we applied unit-clause prop-
agation to the reference formulas and removed a significant
number of clauses and variables before generating equiva-
lence classes.

The really challenging formulas are those of hanoi05 and
hanoi06. We were surprised to find that satire, one of the
slower programs overall, found a verified solution to hanoi05
in some 100 seconds while both chaff and sato timed out
at 1800 seconds. However, running all three solvers on in-
stances of the P- and PC-class, not a single solution was
found by any of the three solvers. We made the same ob-
servations when trying out the three solvers on comparable
instances from hanoi trim family.

The random3sat 250-1065 families. The families of
random3sat 250-1065 consist of formulas selected from the
two classes of largest random-3-sat satisfiable and unsatisfi-
able formulas from SATLIB [6]. Two directories are listed
in Figure 6: random3sat 250-1065 s, designating the family
of satisfiable formulas, and random3sat 250-1065 u, desig-
nating the family of unsatisfiable formulas.

The three formulas under random3sat 250-1065 s have
been selected by examining time-to-solve results reported
by chaff on 100 satisfiable formula instances in uf250-1065:

• uf250-1065 027.cnf is the instance ‘27’, chosen as be-
ing the closest in time-to-solve value (115 seconds) to
the mean value reported for chaff for all 100 instances
(116 seconds). We have chosen an instance closest to
the mean value rather than the minimum value since
the minimum is 0.13 seconds and the instance may not
be as interesting.

• uf250-1065 034.cnf is the instance ‘34’, chosen since
its time-to-solve reported by chaff (552 seconds) is clos-
est to the value of 5x115 = 575 seconds.

• uf250-1065 087.cnf is the instance ‘87’, chosen since
its time-to-solve reported by chaff (1320 seconds) is
the maximum value reported.

The three formulas under random3sat 250-1065 u have been
selected by examining time-to-solve results reported by chaff
on 100 unsatisfiable formula instances in uuf250-1065:

• uuf250-1065 090.cnf is the instance ‘90’, chosen since
its time-to-solve reported by chaff (103 seconds) is the
minimum value reported.

• uuf250-1065 074.cnf is the instance ‘74’, chosen since
its time-to-solve reported by chaff (504 seconds) is clos-
est to the value of 5x103 = 515 seconds.

• uuf250-1065 046.cnf is the instance ‘46’, chosen since
its time-to-solve reported by chaff (1800 seconds) is the
time-out value.

Next, we generated 128 PC-class instances for each formula
selected above and placed them into the respective family
directories according to the schema benchm SATcnf in Fig-
ure 5. In addition, we placed the ‘original’ 2× 100 random
class instances under uf250-1065 R and uuf250-1065 R as
the random class directories next to PC-class instance direc-
tories. We then ran experiments with chaff, sato, and satoL
on all class instances. A comprehensive statistical summary
of these experiments is shown in Table 3.

The results displayed in Table 3 are surprising and reveal-
ing. Due to limited space, our discussion is focused on the
reported time-to-solve statistics only. For the four classes
that are satisfiable, we observe:

• The mean time-to-solve reported by satoL is by far
superior to both sato and chaff – uniformly across all
four classes.

• For the original random class only, the difference of
the means of time-to-solve reported by sato and chaff
is not significant (a t-test finds t = 1.995). This would
be a statistically valid conclusion – had the skeptic
accepted instances from the randomly generated class,
even under conditions as described in [6], as a fair test
case for the two solvers.

• There is an interesting situation for the three cases of
the PC-class: the difference of the means of time-to-
solve reported by sato and chaff is not significant wrt
to instances in the class of uf250-1065 034 PC only (a
t-test finds t = 0.0346). However, the difference is sig-
nificant for instances in the other two classes: chaff ap-
pears more efficient for the class of uf250-1065 027 PC
while sato appears significantly more efficient for the
class of uf250-1065 087 PC.

• The most interesting result however is that, as far as
satoL is concerned, instances in all of the three PC-
classes are of comparable difficulty – the differences of
the means of time-to-solve reported by satoL for each
class are not significant (a t-test finds t = 0.230, 0.917,
and 0.774, when comparing values of all pairs).

• Finally, the max/min ratios reported for the original
‘random class’ represent substantially different prob-
lem instances, unlike those of the carefully controlled
classes introduced by the skeptic. Therefore, these ra-
tios must be interpreted as resulting from the vari-
ability of problem instances rather than that of the
heuristics.

For the four classes that are unsatisfiable, we observe:

• Uniformly across all four classes, the mean time-to-
solve reported by satoL is consistently better than both
sato and chaff, and the mean time-to-solve reported by
sato is consistently better than chaff.

• While the mean time-to-solve reported by satoL is
clearly different from class to class, the maximum time-
to-solve increases to only 83.2 seconds from the corre-
sponding value of 66.4 seconds for the satisfiable class
instances. On the other hand, note that chaff times
out at 3600 seconds on a number of instances.
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Table 4: Three solver comparisons on PC class instances of the queen and hole families.

(a) * * * * * queen instances (sat) * * * * * *

costID = timeToSolve (seconds)

Class labels: name=queen10 v00100, type=PC, size=32

solverID initV minV meanV maxV max/min
———— ——– ——– ——– ——– ——–

sato 0.00 0.00 0.00 0.01 –
satoL 0.02 0.00 0.00 0.01 –
chaff 0.02 0.01 0.02 0.05 5.00

Class labels: name=queen14 v00196, type=PC, size=32

solverID initV minV meanV maxV max/min
———— ——– ——– ——– ——– ——–

sato 0.01 0.00 0.02 0.08 –
satoL 0.09 0.01 0.06 0.18 18.0
chaff 1.36 0.18 0.49 1.80 10.0

Class labels: name=queen16 v00256, type=PC, size=32

solverID initV minV meanV maxV max/min
———— ——– ——– ——– ——– ——–

sato 0.01 0.01 0.07 0.30 30.0
satoL 0.11 0.01 0.25 0.65 65.0
chaff 4.99 0.52 1.11 2.42 9.60

Class labels: name=queen19 v00361, type=PC, size=32

solverID initV minV meanV maxV max/min
———— ——– ——– ——– ——– ——–

sato 0.02 0.02 0.11 1.39 69.5
satoL 2.22 0.03 3.35 14.3 477
chaff 161 38.2 109 188 4.94

(a) * * * * * queen instances (sat) * * * * * *

costID = numberOfImplications

Class labels: name=queen10 v00100, type=PC, size=32

solverID initV minV meanV maxV max/min
———— ——– ——– ——– ——– ——–

sato 72 96 229 571 7.93
satoL 1122 88 276 583 12.75
chaff 4424 1353 3304 6542 4.84

Class labels: name=queen14 v00196, type=PC, size=32

solverID initV minV meanV maxV max/min
———— ——– ——– ——– ——– ——–

sato 142 190 1470 6910 48.7
satoL 3991 329 5024 1.64e4 49.7
chaff 8.73e4 2.06e4 3.94e4 9.17e4 4.45

Class labels: name=queen16 v00256, type=PC, size=32

solverID initV minV meanV maxV max/min
———— ——– ——– ——– ——– ——–

sato 180 248 4684 2.41e4 133
satoL 309 266 1.83e4 5.16e4 193
chaff 1.87e5 4.23e4 6.65e4 1.10e5 4.42

Class labels: name=queen19 v00361, type=PC, size=32

solverID initV minV meanV maxV max/min
———— ——– ——– ——– ——– ——–

sato 260 351 5649 9.89e4 380
satoL 1.35e5 512 2.08e5 9.09e5 1776
chaff 1.76e6 6.21e5 1.15e6 1.78e6 2.86

(b) * * * * * hole instances (unsat) * * * * * *

costID = timeToSolve (seconds)

Class labels: name=hole06 v00042, type=PC, size=32

solverID initV minV meanV maxV max/min
———— ——– ——– ——– ——– ——–

satoL 0.01 0.02 0.02 0.03 3.00
sato 0.04 0.03 0.05 0.06 2.00
chaff 0.01 0.07 0.11 0.14 14.0

Class labels: name=hole07 v00056 v00056, type=PC, size=32

solverID initV minV meanV maxV max/min
———— ——– ——– ——– ——– ——–

satoL 0.14 0.15 0.17 0.19 1.36
sato 0.16 0.21 0.29 0.34 2.12
chaff 0.42 0.86 1.36 2.04 4.86

Class labels: name=hole08 v00072, type=PC, size=32

solverID initV minV meanV maxV max/min
———— ——– ——– ——– ——– ——–

satoL 1.31 1.48 1.68 1.85 1.41
sato 6.76 1.43 1.92 2.60 4.72
chaff 1.25 9.49 16.2 26.3 21.1

Class labels: name=hole09 v00090, type=PC, size=32

solverID initV minV meanV maxV max/min
———— ——– ——– ——– ——– ——–

sato 9.07 14.5 17.3 21.4 2.36
satoL 13.2 16.5 17.9 19.5 1.48
chaff 7.23 85.4 178 274 37.9

Class labels: name=hole10 v00110, type=PC, size=32

solverID initV minV meanV maxV max/min
———— ——– ——– ——– ——– ——–

sato 98.8 158 181 206 2.09
satoL 152 202 217 227 1.49
chaff 47.1 320 451 736 15.6

(b) * * * * * hole instances (unsat) * * * * *

costID = numberOfImplications

Class labels: name=hole06 v00042, type=PC, size=32

solverID initV minV meanV maxV max/min
———— ——– ——– ——– ——– ——–

sato 5920 3663 6149 7928 2.16
satoL 9058 7438 8278 9191 1.24
chaff 2331 7930 1.04e4 1.26e4 5.40

Class labels: name=hole07 v00056 v00056, type=PC, size=32

solverID initV minV meanV maxV max/min
———— ——– ——– ——– ——– ——–

sato 6.72e4 4.05e4 5.04e4 6.26e4 1.66
chaff 2.87e4 4.12e4 5.57e4 7.06e4 2.46
satoL 7.03e4 6.00e4 6.69e4 7.29e4 1.22

Class labels: name=hole08 v00072, type=PC, size=32

solverID initV minV meanV maxV max/min
———— ——– ——– ——– ——– ——–

chaff 5.95e4 1.79e5 2.61e5 3.45e5 5.80
sato 5.37e5 3.23e5 4.46e5 5.76e5 1.78

satoL 6.17e5 5.20e5 6.05e5 6.79e5 1.30

Class labels: name=hole09 v00090, type=PC, size=32

solverID initV minV meanV maxV max/min
———— ——– ——– ——– ——– ——–

chaff 1.61e5 6.61e5 1.04e6 1.39e6 8.64
sato 3.32e6 3.31e6 4.63e6 5.61e6 1.69

satoL 6.05e6 5.45e6 6.01e6 6.61e6 1.21

Class labels: name=hole10 v00110, type=PC, size=32

solverID initV minV meanV maxV max/min
———— ——– ——– ——– ——– ——–

chaff 4.58e5 1.60e6 1.90e6 2.25e6 4.92
sato 3.46e7 3.42e7 4.98e7 5.94e7 1.74

satoL 6.54e7 6.20e7 6.77e7 7.08e7 1.14

NOTES: (1) For each class and for each costID, the solverID ordering is induced by sorting on meanV.
(2) The value of initV is included in computation of max/min ratio.
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(b) queen family, instances from class PC
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It is important to view the solver performance in the context of asymptotic trends, both in terms of time-to-solve and the
platform-independent number-of-implications. Clearly, instances from the PC-class are the only choice to reliably test the
performance of various solvers. Significant observations for this series of experiments also include:

• asymptotic performance in number-of-implications of dp0 nat (coded in interpreted language Tcl [30]) is better than that
of chaff (a well-designed C-implementation of dp0 nat could therefore yield a performance faster than chaff on problems
in ‘queen family’).

• the variability in max/min performance is significantly larger than the already large variability found for the non-satisfiable
problems such as the ‘hole family’. The same observation applies to [meanLB, meanUB], the 95% confidence level interval
of the respective mean values.

• sato is extremely sensitive to variable complementation – the mean number of implications changes from 373.3 in the
P-class to 5649.4 in the PC class in the 361-variable queen problem.

Figure 8: Asymptotic performance statistics for several SAT algorithms on ’queen’ family equivalence classes.
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The formula for hole10 has 110 variables and is the largest reference formula from the ‘hole family’ where solvers chaff and
sato, applied to instances of classes ‘P’ and ‘PC’, do not time out at 1800 seconds. The solver satire starts timing out at 1800
seconds already for the ’hole’ class instances with 72 variables. Observing the histograms below, it is clear that the only class
where solvers chaff and sato should be compared is the ‘PC’-class. No t-test is required to confirm that, for hole10, the solver
sato has the better average case performance, in term of time-to-search or number-of-implications. Such conclusions cannot be
derived on basis of results in Figure 1 alone.
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variability in the performance of the chaff solver. A fair
comparison with the sato solver can only be made on basis
of experiments with the PC class.
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Figure 9: Histograms of two SAT solvers applied to instances in four equivalence classes of ’hole10’.
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• When compared to variability of max/min ratios ob-
served for satisfiable instances, the variability observed
for the unsatisfiable instances is significantly lower,
which is a result we would expect.

In Figure 7 we show histograms and correlations for satis-
fiable and unsatisfiable random-class and the PC-class in-
stances whose statistics we discussed in Table 3. A few brief
observations follow:

• There is a dramatic difference in distributions shown
for the satisfiable and unsatisfiable random-class in-
stances.

• Regardless of the solver, the distribution for the satis-
fiable instances from the random-class tends to follow
a Poisson distribution, while the distribution for the
unsatisfiable instances from the random-class tends to
follow a Gaussian distribution.

• In contrast, regardless of the solver, the distributions
from both satisfiable and unsatisfiable instances of the
PC-class tend to follow a Gaussian distribution.

• There is near perfect linear correlation of the time-to-
solve versus the number-of-implications for the satoL
solver, while the correlation for chaff is also high but
not as linear.

The queen families. The queen families consists of for-
mulas that represent the classical queen problem. All for-
mulas are satisfiable. Two directories are listed in Figure 6:
queen small and queen medium.

A comprehensive statistical summary of experiments with
chaff, sato, and satoL on instances from the PC-class of
queen medium is shown in Table 4(a). The superior per-
formance of sato versus satoL and chaff can be readily as-
certained, both in terms of time-to-solve and number-of-
implications. Note also the variability of the max/min ratio,
peaking at 1776 for satoL.

In Figure 8 we show the asymptotic performance not only
for chaff, satire, and sato but also for dp0 nat. It is clear
that while sato is indeed a very competitive solver, its per-
formance is significantly degraded when we consider the
PC-class rather than P-class – this startling sensitivity to
variable complementation has already been observed on the
6-variable example in Figure 4(b). In contrast, the perfor-
mance of chaff, dp0 nat, and satire is basically the same for
both classes.

It is important to view the solver performance in the con-
text of asymptotic trends, both in terms of time-to-solve and
the platform-independent number-of-implications. Clearly,
instances from the PC-class are the only choice to reliably
test the performance of various solvers. Thus, for the in-
stances from the PC-class of queen medium family, ordering
by the mean value of number-of-implications (a platform-
independent comparison) induces the following order on the
solvers: satire, sato, dp0 nat, and chaff. It is unfortunate
that the current implementation of satire and dp0 nat makes
the two solvers too slow to run experiments next to sato and
chaff on larger problem instances in most other families.

The hole families. The hole families consist of formu-
las that represent the pigeon hole principle. All formulas
are unsatisfiable. Two directories are listed in Figure 6:
hole small and hole medium. Instances derived from the
formula for hole14, the largest formula in the hole medium
family, time out at 1800 seconds for all solvers. As noted
here, an instance need not represent thousands of variables.
Instances with only 210 variables provide a non-trivial chal-
lenge.

A comprehensive statistical summary of experiments with
chaff, sato, and satoL on instances from the PC-class of
hole medium is shown in Table 4(b). There is a crossover in
time-to-solve performance between sato and satoL, whereas
for number-of-implications chaff starts to dominate already
for instances from class hole08 v00072. Note that compared
to the extremely large max/min ratios for instances from
the (satisfiable) queen problem, the peak max/min ratios for
instances from the (unsatisfiable) hole problem amount to at
most 37.9 (for chaff). The histograms in Figure 9 illustrate
a number of universal observation we made throughout these
experiments:

• Only instances in the P and PC class induce significant
variability in the performance of the chaff solver. A
fair comparison with the sato solver can only be made
on basis of experiments with the PC class.

• Only instances in the C and PC class induce significant
variability in the performance of the sato solver. A fair
comparison with the chaff solver can only be made on
basis of experiments with the PC class.

Clearly, the PC-class is the class in which we should compare
the performance of all SAT solvers.

The bw large families. The satisfiable and the unsatis-
fiable families of bw large, listed in Figure 6, are a subset
of the SATPLAN benchmarks, a collection of satisfiability
problems based on AI planning scenarios developed in [22].
The most difficult of these come from the well-known blocks-
world domain in AI (see, e.g. [35]).

A comprehensive statistical summary of experiments with
chaff, sato, and satoL on instances from the PC-class of sat-
isfiable and unsatisfiable instances from bw large is shown
in Table 5. Here, no t−tests are required to determine that
chaff outranks sato, which significantly outranks satoL. The
max/min ratios are much larger for the satisfiable instances
again, peaking at 39.3 for satoL. The satisfiable blocks-world
instances illustrate the sensitivity of sato to complementa-
tion more starkly than any other family we tested. While for
the P-class (results posted on the Web), sato performance
appears close to that of chaff, this clearly is not the case for
the PC-class instances.

The sched families. The satisfiable and the unsatisfiable
families of sched have been created as part of the exper-
iments reported in this paper. These formulas are based
on unit-length-task scheduling instances. Scheduling prob-
lems with unit-length tasks have numerous applications in
computer science, management, and industrial engineering
(see [36] and [37] for a survey). Many variations involv-
ing release times, deadlines, resource constraints, and prece-
dence constraints are NP-complete (see, e.g. [36] and [38]).
It is relatively simple to formulate the existence of a feasible
schedule under these kinds of constraints as a cnf formula
— each variable represents assignment of a task to a spe-
cific slot, two-literal clauses rule out conflicting assignments,
long positive clauses guarantee that each task is assigned,
and Horn clauses are used to express precedence constraints.
Unit-task scheduling therefore offers a rich domain of future
satisfiability benchmarks. We created two families, one sat-
isfiable and one not, of scheduling instances with deadlines
and precedence constraints. The precedence graphs were the
same for both families, hierarchical structures based on N-
graphs, forbidden subgraphs of vertex-series-parallel dags —
see, e.g. [39] for further discussion. Deadlines were designed
so that the satisfiable instances had only a small number
of feasible solutions based on scheduling along specific crit-
ical paths first. The unsatisfiable instances differed only in
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Table 5: Three solver comparisons on PC class instances of the bw large families.

costID = timeToSolve (seconds)

(a) * * * * * * sat instances * * * * * *

Class labels: name=bw large a s, type=PC, size=32

solverID initV minV meanV maxV max/min
———— ——– ——– ——– ——– ——–

chaff 0.01 0.00 0.01 0.02 –
satoL 0.01 0.02 0.03 0.04 4.00
sato 0.03 0.03 0.04 0.06 2.00

Class labels: name=bw large b s, type=PC, size=32

solverID initV minV meanV maxV max/min
———— ——– ——– ——– ——– ——–

chaff 0.08 0.03 0.08 0.16 5.33
sato 0.24 0.34 0.79 1.58 6.58

satoL 1.34 0.09 0.97 2.78 30.9

Class labels: name=bw large c s, type=PC, size=32

solverID initV minV meanV maxV max/min
———— ——– ——– ——– ——– ——–

chaff 4.34 0.39 4.18 8.71 22.3
sato 9.14 78.5 123 235 9.12

satoL 68.3 616 1712 2686 39.3

(b) * * * * * * unsat instances * * * * * *

Class labels: name=bw large a u, type=PC, size=32

solverID initV minV meanV maxV max/min
———— ——– ——– ——– ——– ——–

chaff 0.00 0.00 0.00 0.00 –
sato 0.01 0.00 0.01 0.02 –

satoL 0.00 0.00 0.01 0.02 –

Class labels: name=bw large b u, type=PC, size=32

solverID initV minV meanV maxV max/min
———— ——– ——– ——– ——– ——–

chaff 0.05 0.03 0.05 0.07 2.33
sato 0.06 0.21 0.37 0.56 9.33

satoL 0.48 0.34 0.55 0.83 2.44

Class labels: name=bw large c u, type=PC, size=32

solverID initV minV meanV maxV max/min
———— ——– ——– ——– ——– ——–

chaff 2.23 1.57 2.90 5.31 3.38
sato 6.29 25.8 46.5 68.1 10.8

satoL 663 485 609 870 1.79

costID = numberOfImplications

(a) * * * * * * sat instances * * * * * *

Class labels: name=bw large a s, type=PC, size=32

solverID initV minV meanV maxV max/min
———— ——– ——– ——– ——– ——–

satoL 447 757 1964 3677 8.23
chaff 3085 1103 2229 3898 3.53
sato 1780 2538 3465 4796 2.69

Class labels: name=bw large b s, type=PC, size=32

solverID initV minV meanV maxV max/min
———— ——– ——– ——– ——– ——–

chaff 2.39e4 5420 2.11e4 4.10e4 7.57
sato 2.88e4 1.54e4 3.67e4 7.90e4 5.13

satoL 1.01e5 2528 5.06e4 1.47e5 58.0

Class labels: name=bw large c s, type=PC, size=32

solverID initV minV meanV maxV max/min
———— ——– ——– ——– ——– ——–

chaff 1.10e6 7.37e4 7.57e5 1.61e6 21.9
sato 7.45e5 2.40e6 3.85e6 6.98e6 9.37

satoL 2.90e6 1.56e7 4.28e7 6.99e7 24.1

(b) * * * * * * unsat instances * * * * * *

Class labels: name=bw large a u, type=PC, size=32

solverID initV minV meanV maxV max/min
———— ——– ——– ——– ——– ——–

satoL 862 541 946 1190 2.20
chaff 1080 727 987 1604 2.21
sato 672 567 1036 2772 5.91

Class labels: name=bw large b u, type=PC, size=32

solverID initV minV meanV maxV max/min
———— ——– ——– ——– ——– ——–

chaff 1.44e4 6505 1.19e4 1.70e4 2.61
sato 1.43e4 9518 1.86e4 2.95e4 3.10

satoL 3.48e4 1.68e4 2.61e4 3.84e4 2.29

Class labels: name=bw large c u, type=PC, size=32

solverID initV minV meanV maxV max/min
———— ——– ——– ——– ——– ——–

chaff 6.16e5 3.26e5 5.36e5 8.91e5 2.74
sato 5.26e5 8.72e5 1.55e6 2.42e6 4.60

satoL 2.51e7 1.24e7 1.58e7 2.10e7 2.02

NOTES: (1) For each class and for each costID, the solverID ordering is induced by sorting on meanV.
(2) The value of initV is included in computation of max/min ratio.

the deadlines of two tasks, making them “barely infeasible”.
Sizes of the scheduling instances are listed in Figure 6.

A comprehensive statistical summary of experiments with
chaff, sato, and satoL on instances from the PC-class of sat-
isfiable and unsatisfiable instances of sched is shown in Ta-
ble 6. In contrast to the blocks-world and hole instances,
the scheduling instances are a major success story for satoL,
with sato yielding to chaff on larger instances. Most sur-
prisingly, here the complementation, intrinsic to the PC-
class, has negligible effect on the max/min ratios reported by
satoL, whereas these ratios peak at 410 for chaff and 156,301
for sato! Moreover, the average-case performance of satoL
is two orders of magnitude better than the performance re-
ported by chaff, and three orders of magnitude better than
the performance reported by sato! Major reason reason for
the degradation in performance of sato is that it times out
or nearly times out on several instances that represent no
problem to other solvers. Clearly, a solver that performs ex-
tremely well in one domain (e.g. sato on the queen problem)
may perform quite unpredictably in another.

Variability – Final Observations. Recent experiments
that addressed variability of solver performance attributed
the variability to ‘easy’ problems turning out to be ‘hard’ or
equivalently, to ‘heavy-tail’ phenomena [40, 41, 42]. The ex-
periments with four distinct isomorphism classes formulated
in this paper point out that more attention should be paid
to the current generation of SAT solvers, not the problem
instances per se. For example, the PC-class induces high
variability on chaff performance because the P-class induces
such variability, not the C-class. However, in most cases for
sato and satoL, the high variability demonstrated for the
PC-class is due to variability induced by the C-class.

To put the time-to-solve variability in perspective, we
note that for chaff, the maximum reported max/min ratio is
398 with mean of 199 seconds for class uf250-1065-034 PC
whereas satoL reports a ratio of 377 and a mean of 26.3
seconds (see Table 3). On the other hand, for sato, the
maximum reported max/min ratio is 39,713 with mean of
238 seconds for class sched07s v01286 PC whereas satoL re-
ports a ratio of 1.83 and a mean of 0.07 seconds (see Table 6).
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Table 6: Three solver comparisons on PC class instances of the sched families.

costID = timeToSolve (seconds)

(a) * * * * * * sat instances * * * * * *

Class labels: name=sched05s v00412, type=PC, size=32

solverID initV minV meanV maxV max/min
———— ——– ——– ——– ——– ——–

satoL 0.01 0.00 0.01 0.01 –
sato 0.01 0.00 0.01 0.02 –
chaff 0.12 0.08 5.59 40.5 505

Class labels: name=sched06s v00828, type=PC, size=32

solverID initV minV meanV maxV max/min
———— ——– ——– ——– ——– ——–

satoL 0.03 0.02 0.03 0.04 2.00
sato 0.04 0.04 4.09 81.9 2046
chaff 5.74 0.28 16.4 69.2 247

Class labels: name=sched07s v01386, type=PC, size=32

solverID initV minV meanV maxV max/min
———— ——– ——– ——– ——– ——–

satoL 0.09 0.06 0.07 0.11 1.83
chaff 22.3 3.51 15.5 69.5 19.8
sato 0.11 0.09 238 t’out > 39, 713

(b) * * * * * * unsat instances * * * * * *

Class labels: name=sched05u v00410, type=PC, size=32

solverID initV minV meanV maxV max/min
———— ——– ——– ——– ——– ——–

satoL 0.02 0.02 0.02 0.03 1.50
sato 0.02 0.01 0.03 0.22 22.0
chaff 0.14 0.13 5.01 53.3 410

Class labels: name=sched06u v00826, type=PC, size=32

solverID initV minV meanV maxV max/min
———— ——– ——– ——– ——– ——–

satoL 0.07 0.10 0.10 0.11 1.57
sato 0.10 0.08 0.91 26.1 326
chaff 6.31 0.97 15.4 60.5 62.4

Class labels: name=sched07u v01384, type=PC, size=32

solverID initV minV meanV maxV max/min
———— ——– ——– ——– ——– ——–

satoL 0.22 0.28 0.29 0.30 1.36
chaff 7.39 0.58 16.1 47.8 82.5
sato 0.18 0.23 385 t’out > 20, 086

costID = numberOfImplications

(a) * * * * * * sat instances * * * * * *

Class labels: name=sched05s v00412, type=PC, size=32

solverID initV minV meanV maxV max/min
———— ——– ——– ——– ——– ——–

sato 410 297 393 1366 4.60
satoL 405 405 409 410 1.01
chaff 3.90e4 2.44e4 3.34e5 1.30e6 53.2

Class labels: name=sched06s v00828, type=PC, size=32

solverID initV minV meanV maxV max/min
———— ——– ——– ——– ——– ——–

satoL 819 821 824 826 1.01
sato 826 673 3.40e5 7.30e6 10842
chaff 5.22e5 9.17e4 7.62e5 1.83e6 20.0

Class labels: name=sched07s v01386, type=PC, size=32

solverID initV minV meanV maxV max/min
———— ——– ——– ——– ——– ——–

satoL 1377 1379 1383 1384 1.01
chaff 1.51e6 4.11e5 9.82e5 2.18e6 5.30
sato 1384 1220 1.21e7 t’out > 156, 301

(b) * * * * * * unsat instances * * * * * *

Class labels: name=sched05u v00410, type=PC, size=32

solverID initV minV meanV maxV max/min
———— ——– ——– ——– ——– ——–

satoL 2387 2349 2382 2413 1.03
sato 2387 2083 2927 2.50e4 12.0
chaff 4.32e4 3.72e4 3.11e5 1.49e6 40.0

Class labels: name=sched06u v00826, type=PC, size=32

solverID initV minV meanV maxV max/min
———— ——– ——– ——– ——– ——–

satoL 6254 6176 6239 6276 1.02
sato 6254 5640 8.30e4 2.48e6 438
chaff 5.33e5 2.45e5 7.84e5 1.57e6 6.43

Class labels: name=sched07u v01384, type=PC, size=32

solverID initV minV meanV maxV max/min
———— ——– ——– ——– ——– ——–

satoL 1.09e4 1.08e4 1.09e4 1.10e4 1.01
chaff 8.17e5 1.41e5 1.06e6 2.47e6 17.6
sato 1.09e4 1.02e4 1.92e7 t’out > 18, 887

NOTES: (1) For each class and for each costID, the solverID ordering is induced by sorting on meanV.
(2) The value of initV is included in computation of max/min ratio.
(3) The timeout values have been set to t’out = 3600 seconds.

Significantly, for the entire sched family in Table 6, satoL
dramatically outperforms chaff and sato while max/min ra-
tio remains under 2.0 for time-to-solve and is no more than
1.05 for number-of-implications!

The variability and the Poisson distribution exhibited for
results on a class of satisfiable instances (see Figure 7 and
Table 3) suggest that experiments on sets of random in-
stances are not a viable strategy for statistically significant
comparisons among heuristics. Our skeptic approach, how-
ever, leads to statistically reasonable data (Gaussian with
lower variance) when applied to single random instances as
well as to structured benchmark instances.

6. CONCLUSIONS
As already noted, our experiments used the skeptic to reveal
significant differences in relative SAT solver performance for
different instance families, different instance classes within
the same family, and even for different instances within the

same class. These differences, dramatic enough to raise
questions about much of the previous experimental work
on the satisfiability problem, could not have been detected
in any traditional single-instance benchmark-driven environ-
ment. What conclusions can we draw and how shall we pro-
ceed?

• For the algorithm engineer the bad news is that there
is no simple answer to the question, “what is the best
overall algorithm/strategy for solving the satisfiability
problem?”

• There is good news, however — our results and our
experimental setup provide a clear path to the design
and testing of future enhancements. Specifically, the
weaknesses we have demonstrated in each of the lead-
ing solvers are likely to be the ones that their design-
ers can identify and fix. And the skeptic, along with
supporting infrastructure, is a tool for validating such
improvements.

17



• In this paper we focus on experimental methodology
and what it reveals about externally measurable be-
havior of SAT solvers. An important next step is the
analysis of the heuristics in these solvers. All are based
on the DPLL algorithm and differ only in three main
aspects: their heuristics for

1. choosing branching variables,

2. choosing which branch to explore first, and

3. backtracking after failure of the current branch.

Evaluating the importance of each of these heuristics
in isolation would yield major insights for the next
generation of satisfiability algorithms and we are now
in a position to do so.

• Finally, there is much work to be done:

– developing new families of instances,

– exploring new modalities for creating equivalence
classes, i.e. developing more sophisticated skep-
tics,

– improving the usability of our experimental de-
sign scaffolding, and

– extending the skeptic to other problem domains
in CAD and industrial engineering.

We hope to use our insights to develop better satisfiability
algorithms, to improve overall understanding of what makes
the problem ‘hard’, and to identify new ‘easy’ subclasses of
cnf formulas and efficient algorithms to solve them.

Note. A home page using the SATcnf structure in Figure 5
has been initiated under

http://www.cbl.ncsu.edu/OpenExperiments/SAT/

All reference formulas and equivalence classes listed in Fig-
ure 6 reside as compressed archives under benchm SATcnf
and experimenters are invited to try them out. Raw results
and statistical summaries of all experiments reported in this
paper can be found under results SATcnf. By the end of
June 2002, links will be provided to the cross-platform ex-
perimental design environment and utilities we used in these
experiments.
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