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Problem setting

Let a propositional formula φ be given.

SAT problem

▶ Is there an assignment α : vars(φ) → {0, 1} such that α
satisfies φ?

▶ SAT is NP complete. [Cook 1971, Levin 1973]

Model counting problem (#SAT)

▶ How many assignments α : vars(φ) → {0, 1} satisfying φ are
there?

▶ #SAT is #P complete. [Valiant 1979]
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NP vs. #P

▶ Model counting is at least as hard as SAT

▶ [Toda 1991]: PH can be solved with #P oracle in polynomial
time

→ under common complexity theoretic assumptions,
#SAT is much harder than SAT
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Applications

Plenty of real-world applications:

▶ probabilistic reasoning

▶ risk analysis

▶ explainable artificial intelligence
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Model counting solving
Model Counting Competition at SAT since 2020
[Fichte, Hecher, Hamiti 2020]

CDCL based
▶ adapt common techniques from SAT solving for model

counting

▶ solver SharpSAT [Thurley 2006]

Knowledge compilation

▶ represent formula using an other structure on which counting
is easy, e.g. restricted circuits (usually Decision DNNFs)

▶ solver D4 [Lagniez, Marquis 2017]

FPT algorithms

▶ e.g. tree decomposition based solver DPDB
[Fichte, Hecher, Thier, Woltran 2020]
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Proof systems

Proof systems [Cook, Reckhow 1979]

A proof system P for model counting has the following properties:

▶ Soundness: if there is a P-proof that φ has c models, then
this is correct

▶ Completeness: if φ has c models, then there is a P-proof for
that

▶ P-proofs are efficiently verifiable
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Why study proof systems?

▶ Aim: efficient extraction of proofs from a solver

→ requires strong enough proof system that can express all steps
of a solver

Proof logging

verification of proofs → verification of solver outputs

Understanding of solver performance

φ has no short P-proof → solver requires long running time to
solve φ
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Proof systems for #SAT

There exist two formal proof systems for model counting so far.

kcps(#SAT) [Capelli SAT’19]

▶ “Knowledge Compilation based Proof System”

▶ static proof system based on Decision DNNFs

▶ can be used to verify the trace of a modified D4

▶ some lower bounds follow from Decision DNNFs

MICE [Fichte, Hecher, Roland SAT’22]

▶ “Model counting Induction by Claim Extension”

▶ line-based proof system

▶ can be used to verify traces of SharpSAT, D4 and DPDB

▶ no proof complexity results are known

→ we do proof complexity analysis for this proof system
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Our contributions

Simplified proof system MICE′

▶ more intuitive than MICE and uses simpler rules with less
conditions

▶ polynomially equivalent to MICE

Proof complexity of MICE′

▶ exponential lower bound for MICE′

→ formulas are difficult for many modern solvers
(without preprocessing)
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The MICE′ proof system

MICE′ is a line-based proof system.

Proof lines
Every line is a claim which is a 3-tuple (F ,A, c) with:

▶ F is a CNF,

▶ A is a partial assignment of variables of F called assumption,

▶ c is a count.

The claim states that F under assumption A has exactly c models.

Example

Claim ({a ∨ b, b ∨ c}, {a = 1}, 3) represents models

▶ {a = 1, b = 0, c = 0},
▶ {a = 1, b = 0, c = 1},
▶ {a = 1, b = 1, c = 1}.
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MICE′ proofs

Let formula φ be given.

MICE′ proof

▶ A MICE′ proof π of φ is a sequence of claims

I1, . . . , Ik

derived only with the MICE′ rules such that

Ik = (φ, ∅, c)

for some c ∈ N.
▶ π proves that φ has exactly c models.
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The MICE′ derivation rules - overview

Axiom
(∅, ∅, 1)

Extension (F1,A1, c1)

(F,A, c1 · 2|vars(F )\(vars(F1)∪vars(A))|)
▶ (E-1) F1 ⊆ F

▶ (E-2) A|vars(F1) = A1

▶ (E-3) A satisfies F \ F1

Composition (F ,A1, c1) · · · (F ,An, cn)

(F ,A,
∑

i∈[n] ci )

▶ (C-1) vars(A1) = vars(A2) = . . . = vars(An) and Ai ̸= Aj for i ̸= j

▶ (C-2) A ⊆ Ai for all i ∈ [n]

▶ (C-3) there exists a resolution refutation of A ∪ F ∪ {Ai | i ∈ [n]}

Join (F1,A1, c1) (F2,A2, c2)

(F1 ∪ F2,A1 ∪ A2, c1 · c2)
▶ (J-1) A1 and A2 are consistent

▶ (J-2) vars(F1) ∩ vars(F2) ⊆ vars(Ai ) for i ∈ {1, 2}
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The Axiom rule

Axiom

(∅, ∅, 1)

(∅, ∅, 1) is usually the first claim to start a proof with
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The Extension rule

Extension

(F1,A1, c1)

(F,A, c1 · 2k)

with k = |vars(F ) \ (vars(F1) ∪ vars(A))|
▶ (E-1) F1 ⊆ F

▶ (E-2) A|vars(F1) = A1

▶ (E-3) A satisfies F \ F1

Examples

▶
({a ∨ b}, ∅, 3)

({a ∨ b, a ∨ c ∨ d}, {d = 1}, 6)

▶ if α is a model of φ:
(∅, ∅, 1)
(φ, α, 1)
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The Composition rule

Composition

(F ,A1, c1) · · · (F ,An, cn)

(F ,A,
∑

i∈[n] ci )

▶ (C-1) vars(A1) = vars(A2) = . . . = vars(An) and Ai ̸= Aj for
i ̸= j

▶ (C-2) A ⊆ Ai for all i ∈ [n]

▶ (C-3) there exists a resolution refutation of
A ∪ F ∪ {Ai | i ∈ [n]}

Intuition
We combine sets of models.

▶ (C-1) ensures that we do not count models twice

▶ (C-3) ensures that there are no additional models
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The Composition rule

Examples

▶
(φ, {a = 0}, c0) (φ, {a = 1}, c1)

(φ, ∅, c0 + c1)

with resolution refutation for (C-3)

a a
∅

▶ for unsatisfiable φ:
(φ, ∅, 0)

with some resolution refutation of φ for (C-3)

C1 C2 . . . Cn

...
∅
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The Join rule

Join
(F1,A1, c1) (F2,A2, c2)

(F1 ∪ F2,A1 ∪ A2, c1 · c2)

▶ (J-1) A1 and A2 are consistent

▶ (J-2) vars(F1) ∩ vars(F2) ⊆ vars(Ai ) for i ∈ {1, 2}

Intuition
▶ F1 and F2 are independent under assignments A1, A2

▶ we can pair every model of F1 with every model of F2

Examples

▶
({a ∨ b ∨ e}, {e = 1}, 3) ({c ∨ d ∨ e}, {e = 1}, 3)

({a ∨ b ∨ e, c ∨ d ∨ e}, {e = 1}, 9)
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MICE
[Fichte, Hecher, Roland 2022]

Simplified MICE′

[This paper]

(F , V , A, 1)
Exactly One Model,

Axiom (∅, ∅, 1)

▶ (O-1) vars(A) = V

▶ (O-2) A satisfies F

(F1, V1, A1, c)

(F , V , A, c)
Extension

(F1, A1, c1)

(F,A, c1 · 2|vars(F )\(vars(F1)∪vars(A))|)

▶ (E-1) F1 ⊆ F , V1 ⊆ V

▶ (E-2) A|V1 = A1

▶ (E-3) A satisfies F \ F1

▶ (E-4) V \ V1 ⊆ vars(A)

▶ (E-5) for every C ∈ F1 : A|
V\V1

does not satisfy C

▶ (E-1) F1 ⊆ F

▶ (E-2) A|vars(F1 ) = A1

▶ (E-3) A satisfies F \ F1

(F , V , A1, c1) · · · (F , V , An, cn)

(F , V , A,
∑

i∈[n] ci )
Composition

(F , A1, c1) · · · (F , An, cn)

(F , A,
∑

i∈[n] ci )

▶ (C-1) vars(A1 ) = vars(A2 ) = . . . = vars(An )
and Ai ̸= Aj for i ̸= j

▶ (C-2) A ⊆ Ai for all i ∈ [n]

▶ (C-3) there exists a resolution refutation of
A ∪ {C|V | C ∈ F} ∪ {Ai | i ∈ [n]}

▶ (C-1)
vars(A1 ) = vars(A2 ) = . . . = vars(An )
and Ai ̸= Aj for i ̸= j

▶ (C-2) A ⊆ Ai for all i ∈ [n]

▶ (C-3) there exists a resolution refutation of
A ∪ F ∪ {Ai | i ∈ [n]}

(F1, V1, A1, c1) (F2, V2, A2, c2)

(F1 ∪ F2, V1 ∪ V2, A1 ∪ A2, c1 · c2)
Join

(F1, A1, c1) (F2, A2, c2)

(F1 ∪ F2, A1 ∪ A2, c1 · c2)

▶ (J-1) A1 and A2 are consistent

▶ (J-2) V1 ∩ V2 ⊆ vars(Ai ) for i ∈ {1, 2}
▶ (J-3) vars(Fi ) ∩ ((V1 ∪ V2 ) \ Vi ) = ∅ for i ∈ {1, 2}

▶ (J-1) A1 and A2 are consistent

▶ (J-2) vars(F1 ) ∩ vars(F2 ) ⊆ vars(Ai ) for
i ∈ {1, 2}
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MICE′ is a proof system

Theorem [basically Fichte, Hecher, Roland 2022]

MICE′ is sound and complete.

Completeness

Let φ be an arbitrary formula.

▶ start with Axiom claim IA = (∅, ∅, 1)
▶ for every model α of φ, derive Iα = (φ, α, 1) with Extension

from IA
▶ apply Composition to all claims Iα to derive I = (φ, ∅, c)

Theorem
MICE′ is equivalent to MICE.
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MICE′ complexity measures

We use two different measures.

Proof size
▶ describes the number of MICE′ steps plus the number of

clauses in all resolution refutations

▶ corresponds to the size of a complete encoding of π

Number of MICE′ steps

▶ ignores the sizes of the resolution refutations

▶ corresponds to the usage of a SAT oracle

▶ lower bound for MICE′ steps → lower bound for proof size
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Lower bounds for the proof size
We can use MICE′ as proof system for UNSAT:

▶ φ is UNSAT exactly if there is a MICE′ derivation of claim
(φ, ∅, 0).

Proposition

MICE′ is equivalent to resolution for unsatisfiable formulas.

▶ Proof Idea: combine all resolution refutations of a MICE’
proof

Lower bounds
▶ lower bounds from resolution apply also for MICE′

▶ e.g. Pigeonhole formulas (PHP) require MICE′ proofs of
exponential size

▶ However, we can prove PHP with a single MICE′ step
(one Composition).

▶ Next: Strengthen this result to #steps
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Main result - lower bounds for number of MICE′ steps

Xor-Pairs formulas
For i , j ∈ [n] the formula Xor-Pairsn has variables xi , zij and
clauses encoding

zij = xi ⊕ xj .

Theorem
Any MICE′ proof π of Xor-Pairsn requires 2Ω(n) MICE′ steps.
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Proof of the lower bound

Consider an arbitrary MICE′ proof π of Xor-Pairsn.

Join does not increase the count
If two claims (F1,A1, c1) and (F2,A2, c2) are joined, then
min(c1, c2) = 1.

Extension does not increase the count
If claim (F ,A, c) is derived with Extension from (F1,A1, c1), then
c = c1.

There are many models

Xor-Pairsn has 2n models
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Putting it together
▶ Axiom derives claims with count 1
▶ Extension does not change the count
▶ Join does not change the count
▶ Composition adds counts

Lower bound for tree-like MICE′

1 1 1 1

2n

. . .

. . .

Figure: we can use every Axiom claim only once → we need 2n Axiom
claims

Lower bound for general MICE′ is more technical
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Summary

Simplified proof system MICE′

▶ more intuitive than MICE and uses simpler rules with less
conditions

▶ equivalent to MICE

Lower bounds
▶ Xor-Pairsn formulas need 2Ω(n) MICE’ steps

→ Xor-Pairsn are difficult for many modern solvers (without
preprocessing), even with access to arbitrarily good SAT
solvers
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Open questions

Improve succinctness

Do we find stronger proof system such that

▶ Xor-Pairs has short proofs?

▶ preprocessing from current solvers can be handled?

Relation to other proof systems

▶ There is an alternative approach to prove lower bounds for
MICE’ using Decision DNNFs techniques.
[Bova, Capelli, Mengel, Slivovsky 2016]

▶ How do MICE′ and the knowledge compilation based proof
system relate to each other? [Capelli 2019]

▶ Relation to the Proof System which will be presented
tomorrow? [Bryant, Nawrocki, Avigad, Heule SAT’23]
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