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Cutting Planes as Propositional Proof System

In CP a CNF formula F is translated into a system of linear inequalities:

Clause gets translated to linear inequality:

(x ∨ ȳ ∨ z̄) ! x + (1− y) + (1− z) ≥ 1.

Relax Boolean variables: axioms x ≥ 0, −x ≥ −1 for every variable.

The system has integer solutions if and only if the formula is satisfiable.
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Cutting Planes Rules: Linear Combination + Rounding

Linear combination: For α1, . . . , αk ∈ N0:

〈a(1), x〉 ≥ γ1 . . . 〈a(k), x〉 ≥ γk∑k
i=1 αi 〈a(i), x〉 ≥

∑k
i=1 αiγi

.

Rounding: If all the coefficients in the vector a are divisible by a c ∈ N:

〈a, x〉 ≥ γ
〈 a
c , x〉 ≥ d

γ
c e

.

Both rules together: GC-cut rule
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CP Refutations

A CP refutation for a set f = {f1, . . . , fm} of linear inequalities is a
sequence (g1, . . . , gt) of inequalities satisfying:

each gi is either an axiom or obtained from previous inequalities by a
GC-cut,

and gt is the inequality 0 ≥ 1.

Sound and complete system for integer solutions.
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Complexity Measures for CP

Length: number of vertices in the refutation graph.

(Chvátal) rank: max. number of roundings in a path from an axiom to
the 0 ≥ 1 inequality.

(Cut)width: max. number of variables after rounding.

CP-width introduced in [Dantchev, Martin 11];
Supercritical trade-offs between width and rank in [Razborov 17]

Very natural measures:
Rank similar to depth measure in resolution
Cutwidth measure similar to width in resolution

C(f `) := min
π:f `
C(π).
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Formulas for Graph Isomorphism

G = (VG ,EG ) and H = (VH ,EH) graphs with VG = VH = {1, . . . , n}.
Variables xi ,j with i , j ∈ [n].
If xi ,j > 0, this indicates that vertex i in G is mapped to vertex j in H.

A and B adjacency matrices of graphs G and H. The graphs are
isomorphic if and only if there is a permutation matrix X satisfying

AX = XB.

Iso(G ,H) axioms:

Type 1 axioms: Matrix X is doubly stochastic.
∀v ∈ VG : the equality

∑
w∈VH

xv ,w = 1,
∀w ∈ VH : the equality

∑
v∈VG

xv ,w = 1.

Type 2 axioms: These encode the matrix product AX = XB.
∀i , j ∈ [n]: the equality (AX)i ,j = (XB)i ,j .

Type 3 axioms: For every variable x : the CP axioms x ≤ 1 and x ≥ 0.

G 6∼= H ⇐⇒ Iso(G ,H) has no integer solution.
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Non-isomorphic Graphs Can Have Fractional Isomorphisms
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1/6 1/6 1/6 1/6 1/6 1/6
1/6 1/6 1/6 1/6 1/6 1/6
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1/6 1/6 1/6 1/6 1/6 1/6


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The k-pebble Game on G and H

Duplicator tries to maintain a partial isomorphism
p =

{
(v1,w1), . . . , (v`,w`)

}
of size ≤ k between the graphs.

Spoiler tries to show that they are non-isomorphic.

In each round:
1 Spoiler chooses p′ ⊆ p with |p′| < k .
2 Duplicator extends this partial isomorphism to a bijection ϕ : VG → VH .
3 Spoiler picks a vertex a ∈ VG . New position is p′ ∪

{(
a, ϕ(a)

)}
.

Spoiler wins if p is no local isomorphism on induced subgraphs.

Duplicator wins if she can make the game last indefinitely.
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Example: 3 Pebbles
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Bijection:
1→ 1
2→ 2
3→ 3
4→ 4
5→ 5
6→ 6
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Example: 3 Pebbles
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Yet Another Bijection:
1 7−→ 1
2 7−→ ??
3 7−→ ...
4 7−→ ...
5 7−→ ...
6 7−→ 6
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Weisfeiler–Leman

Write G 6≡k H if G and H can be distinguished in k-game.

If G and H are non-isomorphic, their differentiation number is:

WL(G ,H) := min
{
k ∈ N

∣∣G 6≡k H
}
.

WL(G ,H) = k ⇐⇒ (k − 1)-dimensional Weisfeiler–Leman (coloring)
algorithm is needed to distinguish the graphs [Cai, Fürer, Immerman 92]
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Previously Known Tight Connections

[Atserias Maneva 13], [Malkin 14].
G 6≡k H ⇒ Iso(G ,H) refutable in the k-th level of Sherali–Adams.
Iso(G ,H) refutable in k-th level of Sherali-Adams ⇒ G 6≡k+1 H.

[Grohe Otto 15]
The result of Atserias and Maneva is optimal.

[Berkholz Grohe 12], [Atserias Ochremiak 18]
Iso(G ,H) refutable in monomial PC of rank k ⇐⇒ G 6≡k H.

[Torán W. 22]
Iso(G ,H) refutable in (narrow) Resolution of width k ⇐⇒ G 6≡L k H.
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Our Result

[Atserias Maneva 13], [Malkin 14].
G 6≡k H ⇒ Iso(G ,H) refutable in the k-th level of Sherali–Adams.
Iso(G ,H) refutable in k-th level of Sherali-Adams ⇒ G 6≡k+1 H.

[Grohe Otto 15]
The result of Atserias and Maneva is optimal.

[Berkholz Grohe 12], [Atserias Ochremiak 18]
Iso(G ,H) refutable in monomial PC of rank k ⇐⇒ G 6≡k H.

[Torán W. 22]
Iso(G ,H) refutable in (narrow) Resolution of width k ⇐⇒ G 6≡L k H.

WL(G ,H) ≤ k =⇒ Iso(G ,H) refutable in CP width k .
WL(G ,H) > k =⇒ Iso(G ,H) not refutable in CP width k − 2.
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G 6≡k H =⇒ Iso(G ,H) Refutable in Width k CP

For a game position q =
{

(v1,w1), . . . , (v`,w`)
}
⊆ VG × VH we let

Sq :=
∑̀
i=1

xvi ,wi .

In particular, S∅ = 0 and Spoiler can win from the empty position.

Theorem: If Spoiler has a winning strategy for the r -round k-pebble game
played on with initial position q0, then there is a CP derivation of the
inequality Sq0 ≤ |q0| − 1 from Iso(G ,H) having width k and rank r
simultaneously.

Induction in the number of rounds r .
Base r = 0.
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G 6≡k H =⇒ Iso(G ,H) Refutable in Width k CP

Def: Let q ⊆ V (G )× V (H) be an initial position of the k-pebble game.
The bipartite graph B := Bk

r (q) is defined to have vertices VB = VG ] VH

and edges

EB =
{
{v ,w}

∣∣ Spoiler cannot win k-game in r rounds from q ∪ (v ,w)
}
.

Lemma: [Berkholz Grohe 15]
If Spoiler has a winning position for the k-pebble game in r + 1 rounds
starting from position q. Then, in the graph B there are two sets S ⊆ VG

and T ⊆ VH satisfying:

N(S) = T , N(T ) = S , and |S | > |T |;
Spoiler can win the game in r rounds from the starting position
q ∪ (v ,w) for every pair (v ,w) ∈ VG × VH with the property
v ∈ S ↔ w 6∈ T .
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G 6≡k H =⇒ Iso(G ,H) Refutable in Width k CP

Lemma: [Berkholz Grohe 15]
If Spoiler has a winning position for the k-pebble game in r + 1 rounds
starting from q. Then, in the graph B there are two sets S ⊆ VG and
T ⊆ VH satisfying:

N(S) = T , N(T ) = S , and |S | > |T |;
Spoiler can win the game in r rounds from the starting position
q ∪ (v ,w) for every pair (v ,w) ∈ VG × VH with the property
v ∈ S ↔ w 6∈ T .

Idea: For fixed S and T , there are γ := |S ||T |+ |S ||T | such positions.
By induction we can derive the lines Sq∪(v ,w) ≤ |q| for all of them.
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G 6≡k H =⇒ Iso(G ,H) Refutable in Width k CP

Idea: There are γ := |S ||T |+ |S ||T | such positions.
By induction we can derive the lines Sq∪(v ,w) ≤ |q| for all of them.
Let ` := |q|. By a linear combination of the axioms we obtain∑

v∈S ,w∈T
xv ,w +

∑
v∈S ,w∈T

xv ,w ≤ n − 1.

Linearly combine induction hypotheses:∑
v∈S

∑
w∈T

(Sq + xv ,w ) +
∑
w∈T

∑
v∈S

(Sq + xv ,w ) ≤ (|S ||T |+ |S ||T |)`.

Finally, we get ∑
v∈S ,w∈T

xv ,w +
∑

v∈S,w∈T

xv ,w − γSq ≥ n − γ`

and
−γSq ≥ 1− γ`.
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G 6≡k H =⇒ Iso(G ,H) Refutable in Width k CP

γ := |S ||T |+ |S ||T |, ` := |q|.

−γSq ≥ 1− γ`.

Using the rounding rule dividing by γ, we get

−Sq ≥
⌈

1− γ`
γ

⌉
= 1− `,

which is equivalent to Sq ≤ `− 1.

All linear combinations can be done in one step.

One use of the GC-rule.
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Observations and Consequences

All the lines in the proof are either axioms or have the form Sq ≤ |q| − 1
for some game position q, i. e.,

xi1,j1 + xi2,j2 + . . . xi`,j` ≤ `− 1.

There are only nO(k) such positions ⇒ The CP proof has size nO(k).

Following [Grohe 10] isomorphism testing for planar and minor-free graphs
can be done with polynomial size CP.
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G ≡k H =⇒ Iso(G ,H) Is Not Refutable in Width k − 2 CP

Let PG ,H be the polytope in [0, 1]n×n defined by the Iso(G ,H) inequalities.

For a matrix X ∈ Rn×n and J ⊆ [n], let X|J be the projection of X to the
rows with indices in J.

For k ∈ N, we define P ′G ,H as the following set of survival points in PG ,H :

P ′G ,H(k) :=

{
X ∈ PG ,H

∣∣∣∣ ∀A ∈ Zn×n, ∀b ∈ R, ∀J ⊆ [n], |J| = k :
〈A,X|J〉 ≥ b =⇒ 〈A,X|J〉 ≥ dbe

}
.

P P ′
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G ≡k H =⇒ Iso(G ,H) Is Not Refutable in Width k − 2 CP

Protection Lemma for Graph Isomorphism:

Let k ∈ N. Further, let X be a fractional point in PG ,H and suppose that
for any J ⊆ [n], |J| ≤ k , there exists a set of matrices Y(1), . . . ,Y(s)

satisfying:

For all t ∈ [s], Y(t) is 0, 1 on the rows with indices in J;

for all t ∈ [s], Y(t) is a fractional solution of PG ,H ; and

X|J is a convex combination of Y(1)|J , . . . ,Y(s)|J .

Then, X ∈ P ′G ,H(k).
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G ≡k H =⇒ Iso(G ,H) Is Not Refutable in Width k − 2 CP

Protection Lemma for Graph Isomorphism:

Let k ∈ N. Further, let X be a fractional point in PG ,H and suppose that
for any J ⊆ [n], |J| ≤ k , there exists a set of matrices Y(1), . . . ,Y(s)

satisfying:

For all t ∈ [s], Y(t) is 0, 1 on the rows with indices in J;

for all t ∈ [s], Y(t) is a fractional solution of PG ,H ; and

X|J is a convex combination of Y(1)|J , . . . ,Y(s)|J .

Then, X ∈ P ′G ,H(k).

Idea: Translate winning positions of Duplicator to protection matrices.
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CP Length Lower Bounds for GI Formulas?

Interpolation /

Lifting /

Possible: Exponential lower bounds for tree-like CP with polynomially
bounded coefficients.

Idea:

1 Use known results of block sensitivity for Tseitin formulas
[Impagliazzo Pitassi Urquhart 94], [Huynh Nordström 12], [Göös
Pitassi 13]

2 Tseitin formulas ∼= CFI graphs
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