
Learning Shorter Redundant Clauses in SDCL
Using MaxSAT

Albert Oliveras1, Chunxiao Li2, Darryl Wu2, Jonathan Chung2, Vijay Ganesh2

1Universitat Politècnica de Catalunya
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SAT, CDCL and Limitations

SAT solving is a success story, with CDCL being the dominant method

We like bragging: CDCL solves instances with millions of vars/clauses

However, there are very small instances that CDCL will never solve
efficiently (e.g. pigeon-hole, mutilated chessboard)

These limitations are known due to:

Poly. equivalence between CDCL and resolution [AFT11,PD11]
Lower bounds on resolution proof sizes for some problems [Hak85]

A natural research direction is to extend CDCL so that its underlying
proof system is stronger than resolution.
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Redundancy Notions

A proof system that is more powerful than resolution is based on redundancy:

Definition ([HKB17])

A clause C is redundant wrt F if and only if F and F ∧ C are equisatisfiable

Theorem ([HKB17])

A clause C is redundant wrt F if and only if there exists an assignment ω
such that ω |= C and F ∧ ¬C |= F |ω (where F |ω is the result of removing from
F all clauses satisfied by ω and all literals falsified by ω, i.e. simplify F wrt ω)

But, even if we know ω (witness), it is hard to check that F ∧ ¬C |= F |ω.
This is why a weaker notion is considered:

Definition ([HKB17])

A clause C is Propagation Redundant (PR) wrt F if and only if there exists
an assignment ω such that ω |= C and F ∧ ¬C ⊢1 F |ω
(i.e. UnitProp(F ∧ ¬C ∧ ¬F |ω) = conflict)
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Redundancy Notions (2)

Definition
A clause C is Propagation Redundant (PR) wrt F if and only if there exists
an assignment ω such that ω |= C and F ∧ ¬C ⊢1 F |ω
(i.e. UnitProp(F ∧ ¬C ∧ ¬F |ω) = conflict)

Particular cases of PR clauses:

SPR: ω assigns only variables of C

LPR/RAT: ω assigns only vars of C and satisfies exactly one lit of C

Set-blocked [KSTB16]: particular case of SPR, syntactic definition

Blocked [JBH10]: particular case of set-blocked, syntactic definition
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From CDCL to SDCL

Conflict-Driven Clause-Learning (CDCL) can be seen as the right way to
implement a resolution-based proof procedure:

α := ∅
while true do

α := unitPropagate(F , α)
if conflict found then

C := analyzeConflict()
F := F ∧ C
if C is the empty clause then return UNSAT
α := backjump(C, α)

else
if all variables are assigned then return SAT
α := α ∪ Decide()

Oliveras, Li, Wu, Chung and Ganesh Learning Shorter Clauses in SDCL SAT 2023, July 8th, l’Alguer 6 / 26



From CDCL to SDCL

Satisfiability-Driven Clause-Learning (SDCL) [HKSB17]) is a way to
implement a redundancy-based proof procedure:

α := ∅
while true do

α := unitPropagate(F , α)
if conflict found then

C := analyzeConflict()
F := F ∧ C
if C is the empty clause then return UNSAT
α := backjump(C, α)

else if ¬α is redundant wrt F then
C := decisions(¬α)
F := F ∧ C
α := backjump(C, α)

else
if all variables are assigned then return SAT
α := α ∪ Decide()
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while true do

α := unitPropagate(F , α)
if conflict found then

C := analyzeConflict()
F := F ∧ C
if C is the empty clause then return UNSAT
α := backjump(C, α)

else if Pα(F ) is satisfiable then
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else
if all variables are assigned then return SAT
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Pruning Predicates

Definition

A pruning predicate for F and α is a formula Pα(F ) such that, if Pα(F ) is
satisfiable then clause ¬α is redundant wrt F

Do we know how to construct pruning predicates?

Purely positive reduct: formula ¬α ∧ G, where
G = {satisfiedα(D) | D ∈ F and α |= D}.

Positive reduct: formula ¬α ∧ G, where
G = {touchedα(D) | D ∈ F and α |= D}. [The one used in this work.]

Filtered positive reduct: formula ¬α ∧ G, where
G = {touchedα(D) | D ∈ F and F ∧ α ̸⊢1 untouchedα(D)}.

Proposition (Contribution of this paper)

The purely positive reduct is satisfiable if and only if ¬α is blocked in F .
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Motivation

α := ∅
while true do

α := unitPropagate(F , α)
if conflict found then

C := analyzeConflict()
F := F ∧ C
if C is the empty clause then return UNSAT
α := backjump(C, α)

else if Pα(F ) is satisfiable then
C := decisions(¬α)
F := F ∧ C
α := backjump(C, α)

else
if all variables are assigned then return SAT
α := α ∪ Decide()

In the original SDCL design, the redundant clause to be learned is the
negation of all decisions in α.

Our experience from CDCL suggests that this is not the best choice.
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Motivation - Example

Positive reduct

pα(F ) = ¬α ∧ G, where G = {touchedα(D) | D ∈ F and α |= D}.

Let us consider F and an assignment α built by the SAT solver:

F

x1 ∨ x2 ∨ x4
x1 ∨ ¬x2 ∨ x5
¬x1 ∨ ¬x4 ∨ x5
x2 ∨ x4 ∨ ¬x5
x3 ∨ x6 ∨ ¬x5

α = {xd
1 , x

d
4 , x5,¬xd

2 }

pα(F )

¬x1 ∨ ¬x4 ∨ ¬x5 ∨ x2
x1 ∨ x2 ∨ x4
x1 ∨ ¬x2 ∨ x5
¬x1 ∨ ¬x4 ∨ x5
x2 ∨ x4 ∨ ¬x5

Since pα(F ) is satisfiable ({x1, x2, x5}) we can learn clause ¬x1 ∨ ¬x4 ∨ x2
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Motivation - Example

Positive reduct
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Since pγ(F ) is satisfiable ({x1, x2}) we can learn clause ¬x1 ∨ x2

Subsets γ ⊆ α for which pγ(F ) is satisfiable give shorter redundant clauses.
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Difficulty of the Problem

Definition
TRAIL-MINIMIZATION: given a formula F , an assignment α and an integer
k ≥ 0, we want to know whether there is a subset γ ⊆ α of size k such that
pγ(F ) is satisfiable.

Theorem
TRAIL-MINIMIZATION is NP-hard

A natural way to solve TRAIL-MINIMIZATION is via a MaxSAT encoding
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A MaxSAT Encoding for TRAIL-MINIMIZATION

Let α = {α1, α2, · · · , αk}. For each literal αi ∈ α, we introduce three variables
{ri ,pi ,ni}. We will add soft clauses [ri ] and hard clauses:

¬ri → pi = αi

¬ri → ni = ¬αi

ri → ¬pi

ri → ¬ni

F

x1 ∨ x2 ∨ x4

x1 ∨ ¬x2 ∨ x5

¬x1 ∨ ¬x4 ∨ x5

x2 ∨ x4 ∨ ¬x5

x3 ∨ x6 ∨ ¬x5

α = {xd
1 , x

d
4 , x5,¬xd

2 }

pα(F )

¬x1 ∨ ¬x4 ∨ ¬x5 ∨ x2

x1 ∨ x2 ∨ x4

x1 ∨ ¬x2 ∨ x5

¬x1 ∨ ¬x4 ∨ x5

x2 ∨ x4 ∨ ¬x5

MaxSAT encoding

n1 ∨ n4 ∨ n5 ∨ n2

p1 ∨ n2 ∨ p4 ∨ r1

p1 ∨ n2 ∨ p4 ∨ r4

p1 ∨ p2 ∨ p5 ∨ r1

p1 ∨ p2 ∨ p5 ∨ r2

p1 ∨ p2 ∨ p5 ∨ r5

n1 ∨ n4 ∨ p5 ∨ r5

n2 ∨ p4 ∨ n5 ∨ r4
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A MaxSAT Encoding for TRAIL-MINIMIZATION

For each variable xi in pα(F ), we introduce three vars {ri ,pi ,ni}. We will add
soft clauses [ri ] and hard clauses:

ri → ¬pi

ri → ¬ni

¬ri → pi = αi

¬ri → ni = ¬αi

If we remove x4 and x5 from α we obtain γ. Let us set
r4, r5 to true and r1, r2 to false.

The implications set ¬p4,¬n4,¬p5,¬n5 and
p1=x1, n1=¬x1, p2=¬x2, n2=x2.

F

x1 ∨ x2 ∨ x4

x1 ∨ ¬x2 ∨ x5

¬x1 ∨ ¬x4 ∨ x5

x2 ∨ x4 ∨ ¬x5

x3 ∨ x6 ∨ ¬x5

α = {xd
1 , x

d
4 , x5,¬xd

2 }

pα(F )

¬x1 ∨ ¬x4 ∨ ¬x5 ∨ x2

x1 ∨ x2 ∨ x4

x1 ∨ ¬x2 ∨ x5

¬x1 ∨ ¬x4 ∨ x5

x2 ∨ x4 ∨ ¬x5

MaxSAT encoding

n1 ∨ n4 ∨ n5 ∨ n2

p1 ∨ n2 ∨ p4 ∨ r1

p1 ∨ n2 ∨ p4 ∨ r4

p1 ∨ p2 ∨ p5 ∨ r1

p1 ∨ p2 ∨ p5 ∨ r2

p1 ∨ p2 ∨ p5 ∨ r5

n1 ∨ n4 ∨ p5 ∨ r5

n2 ∨ p4 ∨ n5 ∨ r4
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For each variable xi in pα(F ), we introduce three vars {ri ,pi ,ni}. We will add
soft clauses [ri ] and hard clauses:

ri → ¬pi

ri → ¬ni

¬ri → pi = αi

¬ri → ni = ¬αi

KEY IDEA: by setting the ri ’s to appropriate values, the
MaxSAT encoding allows us to explore the reducts of all
possible subsets of α.
The soft clauses force the MaxSAT solver to pick the
smallest subset with satisfiable reduct.
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SDCL with Redundant Clause Minimization

α := ∅
while true do

α := unitPropagate(F , α)
if conflict found then

C := analyzeConflict()
F := F ∧ C
if C is the empty clause then return UNSAT
α := backjump(C, α)

else if Pα(F ) is satisfiable then
γ := minimize(α)
C := analyzeConflict(¬γ)
F := F ∧ C
α := backjump(C, α)

else
if all variables are assigned then return SAT
α := α ∪ Decide()
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Design Decisions - Order of calls

There are two calls to be made:
1 Check pα(F ) for satisfiability (SAT) [external SAT solver].
2 Check whether ∃ γ ⊆ α such that pγ(F ) is satisfiable [external

MaxSAT solver].

It would suffice to only make the MaxSAT call.
However, the MaxSAT call is more expensive than the SAT one.

If we first make the SAT call and, only if satisfiable,
we make the MaxSAT call, are we missing something?

Could it be the case that the SAT call returns unsat (pα(F ) unsat),
but the MaxSAT call would have found some γ ⊆ α with pγ(F ) satisf.?

Proposition

Given assignments with γ ⊆ α if pγ(F ) is satisfiable, pα(F ) is also satisfiable.

This means that sometimes we will do the two calls but, since usually
the SAT call will be unsat, we will mostly only make the SAT call (the
cheaper one).
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Design Decisions - Frequency of Calls

How often to check for the satisfiability of pα(F )?

Without clause minimization, we should check it as soon as possible:
the smaller α, the smaller the lemma to be learned

With clause minimization, there is a compromise:

The sooner we find pα(F ) satisf., the sooner we prune the search
Smaller α have smaller pα(F ), and hence easier to solve
Larger α have higher chances of having pα(F ) satisfiable
Late calls lead to same-size lemmas (because of minimization)

In our implementation:

Define a decision level D at which to check pα(F ) for satisfiability
If % of satisfiable checks is smaller than (e.g. 15%) increment D
If % of satisfiable checks is larger than (e.g. 15%) decrement D
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Experimental Setting

Implemented SDCL solver with clause minimization on top of CDCL
solver MapleSAT [LGPC16]

Used EvalMaxSAT [Ave20] as MaxSAT solver

No modification to MapleSAT parameters (not even decision heuristics!)

Run experiments on benchmarks that are known to be good for SDCL
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Data on Lemma Size Reduction

On this benchmark, in about 70% of the minimization calls the size of the
asserting lemma was at most 0.3 times the size of the all-decisions clause
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Experimental Results

Results on mutilated chessboard and bipartite perfect matching problems:

SaDiCaL MapleSDCL
Benchmark Kissat Positive Filtered CDCL SDCL SDCL-min
mchess14 4.6 5682 3.6 11.7 7.3 2.7
mchess15 30.1 > 7200 13.8 54.3 24.7 5.5
mchess16 107 > 7200 19.5 439 191 9
mchess17 2293 > 7200 64.8 5038 517 25.8
mchess18 352 > 7200 71.8 > 7200 3803 52.8
mchess19 > 7200 > 7200 > 7200 > 7200 3578 128
mchess20 3720 > 7200 > 7200 > 7200 > 7200 369
mchess21 > 7200 > 7200 > 7200 > 7200 > 7200 977
mchess22 > 7200 > 7200 > 7200 > 7200 > 7200 4507
mchess23 > 7200 > 7200 > 7200 > 7200 > 7200 6041
randomG-Mix-17 > 7200 > 7200 > 7200 2837 1916 257
randomG-Mix-18 > 7200 > 7200 > 7200 > 7200 > 7200 1683
randomG-n17 > 7200 > 7200 > 7200 1266 688 157
randomG-n18 > 7200 > 7200 > 7200 > 7200 > 7200 2350
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Conclusions

SDCL is a promising approach for enhancing CDCL with more powerful
reasoning power

There is A LOT of space for improvement (SDCL is not as mature as
CDCL, we should be patient!)

In this work, we have studied one concrete aspect: how to learn smaller
redundant clauses. Other research directions remain open.

Need for MaxSAT solvers that are good at quick queries (at most 0.1s?)
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Conclusions

SDCL is a promising approach for enhancing CDCL with more powerful
reasoning power

There is A LOT of space for improvement (SDCL is not as mature as
CDCL, we should be patient!)

In this work, we have studied one concrete aspect: how to learn smaller
redundant clauses. Other research directions remain open.

Need for MaxSAT solvers that are good at quick queries (at most 0.1s?)

Thank you for your attention!
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