Separating Incremental and Non-Incremental Bottom-Up
Compilation

Alexis de Colnet

ac [I II ALGORITHMS AND
COMPLEXITY GROUP

Knowledge Compilation

Knowledge compilation (KC) deals with representations of (Boolean) functions.

(X1 V ﬁXz)
A (_\Xl Vv Xz)
A (X1 V x2 V X3)

A\ (_\X1 V —x2 V _'X3)

Lo and Ly two classes of function representations, also called languages.

Given a function F represented in Lo, compute a representation ¥ in £; that is equivalent to F.

F=y & var(F) = var(X) = X and Va € {0,1}%, F(a) = Z(a)

1/ 15

Knowledge Compilation

Knowledge compilation (KC) deals with representations of (Boolean) functions.

(X1 Vv ﬁXz)

A (—x1V x2) T
A (X1 V x2 V X3)

A\ (_\X1 V —x2 V _'X3)

/

Y
0 1
Lo and Ly two classes of function representations, also called languages.

Given a function F represented in Lo, compute a representation ¥ in £; that is equivalent to F.

F=y & var(F) = var(X) = X and Va € {0,1}%, F(a) = Z(a)

1/ 15

Some Compilation Languages

OBDD

Ordered Binary Decision Diagrams QD\(
A e

Support many queries in linear time \)

(model counting, clausal entailment,

model enumeration...) c g‘)
1 ¥
Structured by a linear vtree E D N QK
¢

Conjunction of 2 OBDDs with the same structure in quadratic time)

— -
(e}

Conjunction of 2 OBDDs with the different structure is generally
intractable

2/ 15

Some Compilation Languages

SDD

Sentencial Decision Diagrams

Support many queries in linear time
(model counting, clausal entailment,
model enumeration...)

Structured by a knear vtree
D E

Conjunction of 2 SDDs with the same structure in quadratic time

Conjunction of 2 SDDs with the different structure is generally
intractable

2/ 15

Some Compilation Languages

SDD strDNNF

strDNNFs are strictly more succinct than SDDs, which are
strictly more succinct than OBDDs

All structured by vtrees + tractable conjunction of any two diagrams/circuits with the same structure.

This makes bottom-up compilation to these languages possible.
3/ 15

An Example of BU Compilation

BU compilation to OBDD of the formula

(X1 V—|X2) A (_‘X1 \/X2) AN (X1 \/Xz \/X3) A (_‘X1 \/—|X2 \/—|X3)

4/ 15

An Example of BU Compilation

BU compilation to OBDD of the formula

(X1 V—|X2) A (_‘X1 \/Xz) AN (X1 \/Xz \/X3) A (_‘X1 \/—|X2 \/—|X3)

Y31 = Compile(x1 V —x2)

4)

*
x1 V x2 4/ 15

An Example of BU Compilation

BU compilation to OBDD of the formula

(X1 V—\Xz) A (_‘X1 \/Xz) AN (X1 \/Xz \/X3) A (_‘X1 \/—|X2 \/—|X3)

Y31 = Compile(x1 V —x2)
¥, = Compile(—x1 V x2)

4)

X1V —x2 —x1 V X2 4/ 15

. °;@«@

An Example of BU Compilation

BU compilation to OBDD of the formula

(X1 V—\Xz) A (_‘X1 \/X2) AN (X1 \/Xz \/X3) A (_‘X1 \/—|X2 \/—|X3)

Y31 = Compile(x1 V —x2)

¥, = Compile(—x1 V x2)

)
Y3 = Apply (X, X2, A)
@ D
»

X
4

A
Apply (A)

4 A

4 @\\

X

0 1 0 1
+

X1V —x2 —x1 V X2 4/ 15

An Example of BU Compilation

BU compilation to OBDD of the formula

(X1 V—\Xz) A (_‘X1 \/Xz) AN (X1 \/Xz \/X3) A (_‘X1 \/—|X2 \/—|X3)

Y31 = Compile(x1 V —x2)

¥, = Compile(—x1 V x2)

<Y
Y3 = Apply (X, X2, A)
24 = Compile (X1 Vv X2 Vv X3) %x
A
Apply (A)

4 A

14 @\\ y

R IR (R

0 1 0 1 0 1
+

x1V-xa —x1Vxa x1VxeVxs 4/ 15

An Example of BU Compilation

BU compilation to OBDD of the formula

(X1 V—\Xz) A (_‘X1 \/Xz) AN (X1 \/Xz \/X3) A (_‘X1 \/—|X2 \/—|X3)

Y31 = Compile(x1 V —x2)

¥, = Compile(—x1 V x2)

)
Y3 = Apply (X1, X2, A)
24 = Compile (X1 Vv X2 Vv X3) %x
Y5 = Compile(—x1 V —x2 V —x3)

\
AY
\

A
R P
L \
?@‘1 @* i Q‘E&(6%\ ; r/l

1
o 1] [0 ‘1] o 1
+

*
x1 V x2 X1 Vx2 Xx1Vx2Vx3—xiV-oxaV-oxs 4/ 15

Iy
Apply (A)

Jaind ;i @

\

\

An Example of BU Compilation

BU compilation to OBDD of the formula

(X1 V—\Xz) A (_‘X1 \/Xz) AN (X1 \/Xz \/X3) A (_‘X1 \/—|X2 \/—|X3)

Y31 = Compile(x1 V —x2) =

Y5 = Compile (—x1 V x2) R \’

Y3 = Apply (X1, X2, A) X /I

>4 = Compile(x1 V x2 V Xx3) %x 0 7 L

Y5 = Compile (—x1 V —x2 V —1x3) " 1 Jasibiin

Y6 = Apply (X4, X5, A) N Z @\\

\

ANNENTER

\ 1
)R] RY (R
X y N
o 1] |0 1] | & o 7

+

x1 V x2 X1 Vx2 Xx1Vx2Vx3—xiV-oxaV-oxs 4/ 15

An Example of BU Compilation

BU compilation to OBDD of the formula

(X1 V—\Xz) A (_‘X1 \/Xz) AN (X1 \/Xz \/X3) A (_‘X1 \/—|X2 \/—|X3)

.)
Y31 = Compile(x1 V —x2) Nl P & &
Y5 = Compile (—x1 V x2)] 68& \
Y3 = Apply (X1, X2, A) X o /I
>4 = Compile(x1 V x2 V Xx3) %x 0 7 L
Y5 = Compile(—x1 V —x2 V —x3) " ! I
Y6 = Apply (T4, s, A) A ;i @
Y7 = Restructure(X3) 7 @\ 7 @\\ |

\ 1
)R] RY (R
X y N
o 1] |0 1] | & o 7

+

x1 V x2 X1 Vx2 Xx1Vx2Vx3—xiV-oxaV-oxs 4/ 15

An Example of BU Compilation

BU compilation to OBDD of the formula

(X1 V—\Xz) A (_‘X1 \/Xz) AN (X1 \/Xz \/X3) A (_‘X1 \/—|X2 \/—|X3)

Y31 = Compile(x1 V —x2)

Restruct.

¥, = Compile(—x1 V x2)

Y3 = Apply (X, X2, A) N

>4 = Compile(x1 V x2 V Xx3) %x 7

Y5 = Compile(—x1 V —x2 V —x3) " ! I
Y6 = Apply (T4, Ts, A) ity ;i @

\ N\
\
Y7 = Restructure(X3)] @\ @\ |
14
\

\ I
3 = Apply(¥s,27,A) %@x Q' J Q 6%\“/
0o 1] [0 1] | &1 0 1

+

*
x1 V x2 X1 Vx2 Xx1Vx2Vx3—xiV-oxaV-oxs 4/ 15

The Theoretical Framework for BU Compilation

For me, a bottom-up compilation of a CNF formula/system of constraints F to a language £ (OBDD
or SDD or strDNNF) looks like this:

(X1, h), (X2, b), ..., (En, In)

where F = Xy and, for every i € [N], ¥; € £, and either
I : £;i = Compile (C) for some C € F, then X; = C
li : £j = Restructure(X;) for some j < i, then &; = %;
Iy i = Apply (X, X, A) for some j, k < i, then X; = ¥; A Xy

and ¥;, X, ¥, have the same structure/vtree/variable ordering...

In the worst cases, some ¥; can get very large.

5/ 15

The Theoretical Framework for BU Compilation

For me, a bottom-up compilation of a CNF formula/system of constraints F to a language £ (OBDD
or SDD or strDNNF) looks like this:

(X1, h), (X2, b), ..., (En, In)

where F = Xy and, for every i € [N], ¥; € £, and either
li : ¥; = Compile (C) for some C € F, then X; = C
li : £j = Restructure(X;) for some j < i, then &; = %;
Iy i = Apply (X, X, A) for some j, k < i, then X; = ¥; A Xy

and ¥;, X, ¥, have the same structure/vtree/variable ordering...

In the worst cases, some ¥; can get very large.

5/ 15

The Theoretical Framework for BU Compilation

For me, a bottom-up compilation of a CNF formula/system of constraints F to a language £ (OBDD
or SDD or strDNNF) looks like this:

(X1, h), (X2, b), ..., (En, In)

where F = Xy and, for every i € [N], ¥; € £, and either
I : £;i = Compile (C) for some C € F, then X; = C
li : ¥; = Restructure(X;) for some j < i, then &; = ¥;
Iy i = Apply (X, X, A) for some j, k < i, then X; = ¥; A Xy

and ¥;, X, ¥, have the same structure/vtree/variable ordering...

In the worst cases, some ¥; can get very large.

5/ 15

The Theoretical Framework for BU Compilation

For me, a bottom-up compilation of a CNF formula/system of constraints F to a language £ (OBDD
or SDD or strDNNF) looks like this:

(X1, h), (X2, b), ..., (En, In)

where F = Xy and, for every i € [N], ¥; € £, and either
I : £;i = Compile (C) for some C € F, then X; = C
li : £j = Restructure(X;) for some j < i, then &; = %;
i+ X = Apply (X, 24, A) for some j, k < i, then X = X; A Xy

and ¥;, X, ¥, have the same structure/vtree/variable ordering...

In the worst cases, some ¥; can get very large.

5/ 15

Different Flavors of BU Compilations

The framework gives complete freedom on the order in which the Applys are performed.

Say one wants to compile F = GG A G A G A G to L.

Y1 = Compile((y)
¥, = Compile(()
Y3 = Compile (C3)
>, = Compile((Cy)

The compilation might pursue like this:

Y5 = Apply(¥1, X2, A)
ZG = Apply(23, 24, /\)
Y7 = Apply(Restructure(Xs), Xe, A)

T
ApPLY(N)

0

)=
N

0
1

@& @,
C\GD

v R2QT ¥
0 1

T
Apply (A)
L D

xaaVoxe oxaVoe xaVaxeVxaoxaVoueVoxa

6/ 15

Different Flavors of BU Compilations

The framework gives complete freedom on the order in which the Applys are performed.

Say one wants to compile F= G A GA G A G to L.
Y1 = Compile(Gy)
¥, = Compile ((3)
Y3 = Compile (G3) / \
Y4 = Compile((Cy)

The compilation might pursue like this: /\ /\

25 = Apply():l, 227 /\) 1 22 23 24
Y6 = Apply (X3, X4, N)
Y7 = Apply (s, X6, A)

6/ 15

Different Flavors of BU Compilations

The framework gives complete freedom on the order in which the Applys are performed.

Say one wants to compile F= G A GA G A G to L.

¥, = Compile((y)
¥, = Compile ((3)
Y3 = Compile (G3)
Y4 = Compile((Cy)

Or like that:

Y5 = Apply (X1, X2, A)
Y6 = Apply(Xs, X3, A)
Y7 = Apply (X6, %4,)

X7

p

/
/1

Y1 XY Y3 X4

6/ 15

Different Flavors of BU Compilations

The framework gives complete freedom on the order in which the Applys are performed.

Say one wants to compile F= G A GAGA G to L.

¥; = Compile((y)
Y, = Compile(()
Y3 = Compile(G3)
¥, = Compile ((Cy)

Or even like that:

Y5 = Apply (X1, X2, A)
Y6 = Apply(X3,%4,A)
Y7 = Apply (¥s, 23, N)
>g = Apply (X6, 27, N)

X

/4

2

f \Ze
/ZS\\ A

z1 22 23 24

6/ 15

Different Flavors of BU Compilations

27 z8

FSIAN
g A A \/\

Y1 X X3 o4, PETED TR X D W Y1 X X3 o4,
Incremental Tree-like General (DAG-like)
BU compilation BU compilation BU compilation

In incremental BU all Applys are of the form ¥; = Apply(X;, Compile (C),A) (or just
Y = Apply (%, C, /\))

7/ 15

Different Flavors of BU Compilations

/

P

/

Xs

/1

X1 X2 X3

27

2,

Incremental

BU compilation

In incremental BU all Applys are of the form ¥; = Apply(X;, Compile (C),A) (or just

Y = Apply (X, C,N)).

7/ 15

Incremental BU Compilation in Practice

Incremental BU compilation has been used for OBDDs and SDDs
and for pseudo-Boolean functions

Incremental BU compilation for CNF is attractive in practice.
the problem of ordering the Applys is reduced to that of ordering the input clauses
the Apply (X, C, A) are feasible in linear time
the Restructure operation has a unique purpose: reducing the size of the core circuit

Some BU compilation strategies are “close to incremental”. If a BU compilation is such that, every
Apply instruction is either

an Apply (X, C, A) for some clause C, or
an Apply (¥, ¥’ A) with var(X)Nvar(X') =0
then the BU compilation can be turned into an incremental BU compilation in polynomial time.

Lhttps:/ /www.irit.fr/ Helene.Fargier/BR4CP/CompilateurSALADD.html|
8/ 15

Contributions

The paper shows an exponential separation between incremental BU compilation and general BU
compilation.

There exists a class F of CNF formulas that admit polynomial-size BU compilation into
OBDD, but whose incremental BU compilations into OBDD/SDD/str-DNNF all
generate intermediate circuits of size exponential in the number of variables.

So there are infinitely many CNF formulas that are

“easy” to compile in general BU fashion
hard to compile in incremental BU fashion

9/ 15

A Quick Peek into the Proof

CNF formulas that are “easy” to compile with general BU compilation

For F1 and F2 any two CNF formulas, F1 ¥ F is the CNF formula A, cr, A, (G V G).

cFa

F1!F25F1VF2 and |F1!F2|:|F1HF2|

Suppose

F1 is unsatisfiable and,
F1 and F, are easy to BU compile (even incrementally)

then F; YV F; is easy to BU compile (non-incrementally).

10/ 15

A Quick Peek into the Proof

CNF formulas that are “easy” to compile with general BU compilation

Suppose

F1 is unsatisfiable and,

GV C
Fi and F, are easy to BU compile Naer Naen(GV G)

then F; Y F; is easy to BU compile.

11/ 15

A Quick Peek into the Proof

CNF formulas that are “easy” to compile with general BU compilation

Suppose

F1 is unsatisfiable and,
/\czer /\CleFl Cl v C2

F1 and F, are easy to BU compile
then F; Y F; is easy to BU compile. ,// \

A (GVva) A (GvE) . (Gavah
GeR Gef ClEFl

11/ 15

A Quick Peek into the Proof

CNF formulas that are “easy” to compile with general BU compilation

Suppose

F1 is unsatisfiable and,

F1 and F, are easy to BU compile

then F; Y F; is easy to BU compile.

compile
FYc}

A (GVv Q) A (G VGE) A (Gva)

GeR Gef CGleFR

11/ 15

A Quick Peek into the Proof

CNF formulas that are “easy” to compile with general BU compilation

Suppose

F1 is unsatisfiable and,

Zczi):C22 Yem

2

F1 and F, are easy to BU compile

then F; VY F; is easy to BU compile. ol compile Tl
FYC} FYc2 F1YCy
A (GVv Q) A (G VGE) A (Gva)
GER GeER GeR

11/ 15

A Quick Peek into the Proof

CNF formulas that are “easy” to compile with general BU compilation

Suppose

F1 is unsatisfiable and,

F1 and F, are easy to BU compile

then F; Y F; is easy to BU compile.

BU compile F>
zc; ch
BU BU
compile compile
FYc} FYc2
A (Gv @) A (GiVv33)

GER

GEFR

Yep

2

BU
compile
Fyey

A GV

CGleFR

11/ 15

A Quick Peek into the Proof

CNF formulas that are hard to compile incrementally

For the incremental BU compilation of Fy ¥ F», consider the last Apply:

(X1, h), (X2, k), ..., (En,In)
——
In : Xn=Apply(Zn_1,C1VC2,A)

Suppose both F; and F, are unsatisfiable, then

Yno1 = (Fl \ C1) N (Fz \ Cz)

So compiling F1 ¥ F» incrementally is at least as hard as compiling (F1 \ Gi) A (F2 \ &2).

12/ 15

A (not so) Quick Peek into the Proof

For £ € {OBDD, SDD, strDNNF}, we want F; and F> such that
F1 and F> are unsatisfiable
F1 and F» are “easy” to BU compile in £
(F1\ Gi) A (F2 \ &2) has exponential size in L for every Gy € Fy, G € F>

13/ 15

A (not so) Quick Peek into the Proof

For £ € {OBDD, SDD, strDNNF}, we want F; and F> such that
F1 and F, are unsatisfiable

F1 and F» are “easy” to BU compile in £

(F1\ Gi) A (F2 \ &2) has exponential size in L for every Gy € Fy, G € F>

2n holes
P(X) = exactly one pigeon per hole
H(X) = exactly one hole for each pigeon X1 | X2 | x3 | X
ODD(X) = there is an odd number of pigeon in total
X2,1 X2,2 X2,3 X2,4
X3,1 X3,2 X3,3 X3,4
Xa,1 X4,2 Xa,3 X4,4

2n pigeons

13/ 15

A (not so) Quick Peek into the Proof

For £ € {OBDD, SDD, strDNNF}, we want F; and F> such that

F1 and F, are unsatisfiable

F1 and F» are “easy” to BU compile in £

(F1\ Gi) A (F2 \ &2) has exponential size in L for every Gy € Fy, G € F>

Fp(X) = CNF representation of P(X)
Fr(X) = CNF representation of H(X)
Fopp(X, Y) = standard CNF encoding of ODD(X)

2n holes
X1,1 X1,2 X1,3 X1,4
X2,1 X2,2 X2,3 X2,4
X3,1 X3,2 X3,3 X3,4
Xa,1 Xa,2 Xa,3 Xa,4

2n pigeons

13/ 15

A (not so) Quick Peek into the Proof

For £ € {OBDD, SDD, strDNNF}, we want F; and F> such that

F1 and F, are unsatisfiable

F1 and F» are “easy” to BU compile in £

(F1\ Gi) A (F2 \ &2) has exponential size in L for every Gy € Fy, G € F>

Fp(X) = CNF representation of P(X)
Fr(X) = CNF representation of H(X)
Fopp(X, Y) = standard CNF encoding of ODD(X)

F1(X,Y) = Fe(X) A Foop(X, Y)
F2(X, Z) = Fu(X) A Fopp (X, 2)

2n holes
X1,1 X1,2 X1,3 X1,4
X2,1 X2,2 X2,3 X2,4
X3,1 X3,2 X3,3 X3,4
Xa,1 Xa,2 X4,3 Xa,4

2n pigeons

13/ 15

A (not so) Quick Peek into the Proof

For £ € {OBDD, SDD, strDNNF}, we want F; and F> such that

F1 and F, are unsatisfiable

F1 and F» are “easy” to BU compile in £

(F1\ Gi) A (F2 \ &2) has exponential size in L for every Gy € Fy, G € F>

Fp(X) = CNF representation of P(X)
Fr(X) = CNF representation of H(X)
Fopp(X, Y) = standard CNF encoding of ODD(X)

F1(X,Y) = Fe(X) A Foop(X, Y)
F2(X, Z) = Fu(X) A Fopp (X, 2)

2n holes
X1,1 X1,2 X1,3 X1,4
X2,1 X2,2 X2,3 X2,4
X3,1 X3,2 X3,3 X3,4
Xa,1 Xa,2 X4,3 Xa,4

2n pigeons

13/ 15

A (not so) Quick Peek into the Proof

For £ € {OBDD, SDD, strDNNF}, we want F; and F> such that

F1 and F, are unsatisfiable

F1 and F» are “easy” to BU compile in £

(F1\ Gi) A (F2 \ &2) has exponential size in L for every Gy € Fy, G € F>

Fp(X) = CNF representation of P(X)
Fr(X) = CNF representation of H(X)
Fopp(X, Y) = standard CNF encoding of ODD(X)

F1(X,Y) = Fe(X) A Foop(X, Y)
F2(X, Z) = Fu(X) A Fopp (X, 2)

2n holes
X1,1 X1,2 X1,3 X1,4
X2,1 X2,2 X2,3 X2,4
X3,1 X3,2 X3,3 X3,4
Xa,1 Xa,2 X4,3 Xa,4

{\

2n pigeons

13/ 15

A (not so) Quick Peek into the Proof

For £ € {OBDD, SDD, strDNNF}, we want F; and F> such that

F1 and F, are unsatisfiable

F1 and F» are “easy” to BU compile in £

Fp(X) = CNF representation of P(X)
Fr(X) = CNF representation of H(X)
Fopp(X, Y) = standard CNF encoding of ODD(X)

F1(X,Y) = Fe(X) A Foop(X, Y)
F2(X, Z) = Fu(X) A Fopp (X, 2)

2n holes
X1,1 X1,2 X1,3 X1,4
X2,1 X2,2 X2,3 X2,4
X3,1 X3,2 X3,3 X3,4
Xa,1 Xa,2 Xa,3 Xa,4

{\

2n pigeons

13/ 15

A (not so) Quick Peek into the Proof

For £ € {OBDD, SDD, strDNNF}, we want F; and F> such that

F1 and F, are unsatisfiable

F1 and F» are “easy” to BU compile in £

PHP3"~2 is hidden in every incremental BU compilation of F; V F;

Fp(X) = CNF representation of P(X)
Fr(X) = CNF representation of H(X)
Foop (X, Y) = standard CNF encoding of ODD(X)

F1(X,Y) = Fe(X) A Foop(X, Y)
F2(X,Z) = Fu(X) A Foop(X, Z)

2n holes
X1,1 X1,2 X1,3 X1,4
X2,1 X2,2 X2,3 X2,4
X3,1 X3,2 X3,3 X3,4
X4,1 X4,2 Xa,3 X4,4

{\

2n pigeons

13/ 15

A Quiek Long Peek into the Proof

In every incremental BU compilation of F1(X, Y)Y F2(X, Z), there exists k, a small A and an
2n — A x 2n — A submatrix X’ of X such that

(Zlall)a (227I2)7 ey (Zkalk)a sy (ZNaIN)

Poly-time transform %

Y| = PHP2'~2(X') and X, is a strDNNF

Every OBDD/SDD/DNNF representing PHP!(X) has size 2" poly(1/n).

14/ 15

27

/

26

/

X5

/1

Y1 Y Y3 X4

Incremental
BU compilation

BU compilers use incremental (clause-by-clause) approaches

Incremental compilations are exponentially less compact than general BU compilations
Can we create compilers that compile in tree-like BU fashion?

Can we separate tree-like BU compilation from DAG-lake BU compilation?

15/ 15

