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Problem 1: swapping pigeons

The pigeonhole problem PHP(𝒏)

Can we fit 𝒏 pigeons into 𝒏 − 𝟏 holes?

w.l.o.g. pigeon 𝟏 is not in hole 𝒏 − 𝟏•
otherwise swap pigeons 𝟏 and 𝒏

⋮
w.l.o.g. pigeon 𝒏 − 𝟏 is not in hole 𝒏 − 𝟏•
pigeon 𝟏 is in some hole 𝟏,… , 𝒏 − 𝟐•
⋮
pigeon 𝒏 − 𝟏 is in some hole 𝟏,… , 𝒏 − 𝟐•
solve PHP(𝒏 − 𝟏)•

How long are propositional proofs?

resolution exponential lower bound
classical separation result

extended resolution 𝑶(𝒏𝟒)
new variables as definitions

DPR 𝑶(𝒏𝟑)
DPR conditionally assigns variables
w.l.o.g to⊤/⊥

𝑶(𝒏) iterations
𝑶(𝒏) pigeons/iteration

𝑶(𝒏) conditional w.l.o.g.s/pigeon

DSR conditionally assigns variables
w.l.o.g. to literals/⊤/⊥

we can swap variables in𝑶(𝟏)!

why does this fail?

how do wemake it work?

a new proof systemwith
one-instruction variable swaps!

we get refutations of PHP(𝒏)
with𝑶(𝒏𝟐) instructions! :)

we get refutations of PHP(𝒏)
with𝑶(𝒏𝟐) instructions, right?
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Problem 2: interference-free lemmas

SAT
solver

learn𝑪
𝑭 ⊨ 𝑪 delete𝑪

derive as RUP
(a form of iterated resolution + subsumption)

log deletion

insert𝑪
𝑭 ≡sat 𝑭 ∧ 𝑪

insert proof fragment

Proof generation for inprocessing

if𝑪 is a RUP over 𝑭if𝑪 is implied by 𝑭if𝑪 is an SR clause over 𝑭 upon 𝝈if 𝑭| ̄𝑪 ⊨ 𝝈(𝑭)

i: 𝑪 [𝝈]
i: 𝑳𝟑

i: 𝑳𝟐

i: 𝑳𝟏

d: 𝑳𝟑
d: 𝑳𝟐
d: 𝑳𝟏

𝑪 is an SR clause if 𝝈(𝑪) is a tautology and
all clauses in 𝝈(𝑭) are RUP clauses over 𝑭| ̄𝑪

all clauses in 𝝈(𝑭)
are RUP clauses

over 𝑭 ∧ 𝑳𝟏 ∧ 𝑳𝟐 ∧ 𝑳𝟑

we also need 𝝈(𝑳𝟏), 𝝈(𝑳𝟐), 𝝈(𝑳𝟑) to be RUPs over 𝑭 ∧ 𝑳𝟏 ∧ 𝑳𝟐 ∧ 𝑳𝟑
... whichmight need extra lemmas themselves...

... and so on...
how can we temporarily introduce interference-free lemmas?

the clauses in 𝝈(𝑭) need to be RUPs,
not just be implied

we can just add lemmas
until they are RUPs! :)

we can just add lemmas
until they are RUPs, right?
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Problem 3: cores and trimming under interference

Generating an unsatisfiable core from a proof

mark the empty clause and proceed backwards
if𝑪 is not marked, skip it•
if𝑪 is an input clause, it is in the core•
if𝑪 is a RUP clause, mark its antecedents•
if𝑪 is an SR clause upon 𝝈...?•

𝑬𝟎𝑬𝟎 mark

sub
𝑨𝟎

𝑬𝟏𝑬𝟏 mark

res
𝑨𝟏

𝑬𝟐𝑬𝟐 mark

res
𝑨𝟐

⋱
𝑨𝒏−𝟏

𝑬𝒏𝑬𝒏 mark

res
𝑪

marked

newly
marked

can we do better
than this fixpoint
computation?

for eachmarked𝑫, 𝝈(𝑫) is a RUP clause over 𝑭| ̄𝑪 ⇒ mark their antecedents
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The interference zoo

Propagation-based redundancy notions

RUPRAT
PR

SR

[Goldberg, Novikov ’03][Järvisalo, Heule, Biere ’12][Heule, Kiesl, Biere ’17][Buss, Thapen ’19]

DRUP deletion + RUP
DRAT deletion + RAT
DPR deletion + PR
DSR deletion + SR

𝑪 is a reverse unit propagation (RUP) over 𝑭whenever unit propagation over
𝑭 ∧ ¬𝑪 reaches a conflict

Properties

RUP is monotonic if 𝑭 ⊆ 𝑮, then𝑪 is a RUP over𝑮

RAT/PR/SR are non-monotonic!

RUP preserves models every model of 𝑭 is a model of 𝑭 ∧ 𝑪

RAT/PR/SR preserve satisfiability: if 𝑭 is satisfiable, then so is 𝑭 ∧ 𝑪

RUP has a dependency structure 𝑪 is an iterated resolvent over 𝑭

RAT/PR/SR depend on the absence of clauses

lack of these
properties is called

interference

5
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Substitution redundancy

𝑭
𝑪
𝝈

CNF formula
clause
atomic substitution

𝑪 is a substitution redundant (SR) clause over 𝑭 upon 𝝈whenever:
the clause 𝝈(𝑪) is a tautology•
for each clause𝑫 ∈ 𝑭, the clause𝑪 ∨ 𝝈(𝑫) is a RUP clause over 𝑭•

Theorem if𝑪 is an SR clause over 𝑭 upon 𝝈, then 𝑭 ≡sat 𝑭 ∧ 𝑪

Intuition if a model of 𝑭 falsifies𝑪, then 𝝈 transforms that model into
amodel of 𝑭 ∧ 𝑪.

this is reasoning without loss of generality!

can we relax the conditions for SR?
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Mutation logic, or how I learned to stop worrying and love interference

Substitutions can be seen as transformations on interpretations

this extends work from [Rebola-Pardo, Suda ’18]

interpretations variables → {𝟎, 𝟏}𝑰∶
formulas → {𝟎, 𝟏}

substitutions 𝝈∶ variables → formulas

mutations 𝑰 ∘ 𝝈∶ variables → {𝟎, 𝟏}

conditional
mutations 𝑰 ∘ (𝝈 ∶− 𝑸) =

{
𝑰 ∘ 𝝈 if 𝑰 ⊨ 𝑸
𝑰 if 𝑰 ⊭ 𝑸

triggereffect

Mutation logic propositional logic + mutation operator

𝑰 ⊨ ∇(𝝈 ∶− 𝑸). 𝑭 iff 𝑰 ∘ (𝝈 ∶− 𝑸) ⊨ 𝑭

Theorem if𝑪 is an SR clause over 𝑭 upon 𝝈, then 𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪).𝑭 ∧ 𝑪
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Interference is inference (in mutation logic)

𝑰 ⊨ ∇(𝝈 ∶− 𝑸). 𝑭 iff 𝑰 ∘ (𝝈 ∶− 𝑸) ⊨ 𝑭

Theorem if𝑪 is an SR clause over 𝑭 upon 𝝈, then 𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪).𝑭 ∧ 𝑪

∀𝑫 ∈ 𝑭,
𝑪 ∨ 𝝈(𝑫) is RUP over 𝑭

∀𝑫 ∈ 𝑭,
𝑭 ⊨ 𝑪 ∨ 𝝈(𝑫)

∀𝑫 ∈ 𝑭,
𝑭 ∧ ̄𝑪 ⊨ 𝝈(𝑫)

∀𝑫 ∈ 𝑭,
𝑭 ∧ 𝑪 ⊨ 𝑫

∀𝑫 ∈ 𝑭,
𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪).𝑫

𝝈(𝑪) is a
tautology

𝑭 ∧ ̄𝑪 ⊨ 𝝈(𝑪) 𝑭 ∧ 𝑪 ⊨ 𝑪

𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪). 𝑪𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪). 𝑭 ∧ 𝑪
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Swapping pigeons, finally

The pigeonhole problem PHP(𝒏)

𝒑𝒊𝒓 pigeon 𝒊 is in hole 𝒓

𝒑𝒊𝟏 ∨⋯ ∨ 𝒑𝒊(𝒏−𝟏) for 𝟏 ≤ 𝒊 ≤ 𝒏
𝒑𝒊𝒓 ∨ 𝒑𝒋𝒓 for 𝟏 ≤ 𝒊 < 𝒋 ≤ 𝒏 and 𝟏 ≤ 𝒓 < 𝒏

Can we fit 𝒏 pigeons into 𝒏 − 𝟏 holes?

w.l.o.g. pigeon 𝟏 is not in hole 𝒏 − 𝟏•
otherwise swap pigeons 𝟏 and 𝒏

⋮
w.l.o.g. pigeon 𝒏 − 𝟏 is not in hole 𝒏 − 𝟏•
pigeon 𝟏 is in some hole 𝟏,… , 𝒏 − 𝟐•
⋮
pigeon 𝒏 − 𝟏 is in some hole 𝟏,… , 𝒏 − 𝟐•
solve PHP(𝒏 − 𝟏)•

introduce𝑪 = 𝒑𝟏(𝒏−𝟏) as SR clause upon 𝝈
𝝈 = {𝒑𝟏𝒓 ↦ 𝒑𝒏𝒓, 𝒑𝒏𝒓 ↦ 𝒑𝟏𝒓 ∶ 𝟏 ≤ 𝒓 < 𝒏}

𝑪 ∨ 𝝈(𝑫) is RUP for each clause𝑫!
but 𝝈(𝑪) is not a tautology...𝑪 ∨ 𝝈(𝑪) = 𝒑𝟏(𝒏−𝟏) ∨ 𝒑𝒏(𝒏−𝟏) is RUP!

... but it suffices that𝑪 ∨ 𝝈(𝑪) is a RUP

solved! (details in the paper)
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Interference-free lemmas, finally

SAT
solver

learn𝑪
𝑭 ⊨ 𝑪 delete𝑪

derive as RUP
(a form of iterated resolution + subsumption)

log deletion

insert𝑪
𝑭 ≡sat 𝑭 ∧ 𝑪

insert proof fragment

Proof generation for inprocessing

if 𝑭| ̄𝑪 ⊨ 𝝈(𝑭)

i: 𝑪 [𝝈]

mod𝑳𝟏, 𝑳𝟐, 𝑳𝟑

i: 𝑳𝟑

i: 𝑳𝟐

i: 𝑳𝟏

d: 𝑳𝟑
d: 𝑳𝟐
d: 𝑳𝟏

𝑪 is an SR clause if 𝝈(𝑪) is a tautology and
all clauses in 𝝈(𝑭) are RUP clauses over 𝑭| ̄𝑪

𝑪 is a WSR clausemodulo 𝜟 if
𝑪 ∨ 𝝈(𝑫) is a RUP for each𝑫 ∈ 𝑭 \𝜟 ∧ 𝑪

all clauses in 𝝈(𝑭)
are RUP clauses

over 𝑭 ∧ 𝑳𝟏 ∧ 𝑳𝟐 ∧ 𝑳𝟑

we also need 𝝈(𝑳𝟏), 𝝈(𝑳𝟐), 𝝈(𝑳𝟑) to be RUPs over 𝑭 ∧ 𝑳𝟏 ∧ 𝑳𝟐 ∧ 𝑳𝟑
... whichmight need extra lemmas themselves...

... and so on...

solved! (details in the paper)
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Cores and trimming under interference, finally

Generating an unsatisfiable core from a proof

mark the empty clause and proceed backwards
if𝑪 is not marked, skip it•
if𝑪 is an input clause, it is in the core•
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Takeaways and future directions

Existing interference rules are unnecessarily restrictive, and those restrictions
can be removed at negligible cost.

Doing so enables shorter, intuitive proofs.

Interference-free lemmas are possible for free.

There is no need to perform fixpoint core generation, even if not using WSR.

There is a clear, mutation-based semantics for interference.

Future directions

Developing a proof format and proof checkerwith state-of-the-art efficiency.

Can we improve on SDCL-like methods with WSR?

Can we use themutation framework for QBF interference?

... andmaybe, potentially, perhaps, possibly, SMT/FOL?

13



Takeaways and future directions

Existing interference rules are unnecessarily restrictive, and those restrictions
can be removed at negligible cost.

Doing so enables shorter, intuitive proofs.

Interference-free lemmas are possible for free.

There is no need to perform fixpoint core generation, even if not using WSR.

There is a clear, mutation-based semantics for interference.

Future directions

Developing a proof format and proof checkerwith state-of-the-art efficiency.

Can we improve on SDCL-like methods with WSR?

Can we use themutation framework for QBF interference?

... andmaybe, potentially, perhaps, possibly, SMT/FOL?

13



Takeaways and future directions

Existing interference rules are unnecessarily restrictive, and those restrictions
can be removed at negligible cost.

Doing so enables shorter, intuitive proofs.

Interference-free lemmas are possible for free.

There is no need to perform fixpoint core generation, even if not using WSR.

There is a clear, mutation-based semantics for interference.

Future directions

Developing a proof format and proof checkerwith state-of-the-art efficiency.

Can we improve on SDCL-like methods with WSR?

Can we use themutation framework for QBF interference?

... andmaybe, potentially, perhaps, possibly, SMT/FOL?

13



Takeaways and future directions

Existing interference rules are unnecessarily restrictive, and those restrictions
can be removed at negligible cost.

Doing so enables shorter, intuitive proofs.

Interference-free lemmas are possible for free.

There is no need to perform fixpoint core generation, even if not using WSR.

There is a clear, mutation-based semantics for interference.

Future directions

Developing a proof format and proof checkerwith state-of-the-art efficiency.

Can we improve on SDCL-like methods with WSR?

Can we use themutation framework for QBF interference?

... andmaybe, potentially, perhaps, possibly, SMT/FOL?

13



Takeaways and future directions

Existing interference rules are unnecessarily restrictive, and those restrictions
can be removed at negligible cost.

Doing so enables shorter, intuitive proofs.

Interference-free lemmas are possible for free.

There is no need to perform fixpoint core generation, even if not using WSR.

There is a clear, mutation-based semantics for interference.

Future directions

Developing a proof format and proof checkerwith state-of-the-art efficiency.

Can we improve on SDCL-like methods with WSR?

Can we use themutation framework for QBF interference?

... andmaybe, potentially, perhaps, possibly, SMT/FOL?

13



Takeaways and future directions

Existing interference rules are unnecessarily restrictive, and those restrictions
can be removed at negligible cost.

Doing so enables shorter, intuitive proofs.

Interference-free lemmas are possible for free.

There is no need to perform fixpoint core generation, even if not using WSR.

There is a clear, mutation-based semantics for interference.

Future directions
Developing a proof format and proof checkerwith state-of-the-art efficiency.

Can we improve on SDCL-like methods with WSR?

Can we use themutation framework for QBF interference?

... andmaybe, potentially, perhaps, possibly, SMT/FOL?

13



Takeaways and future directions

Existing interference rules are unnecessarily restrictive, and those restrictions
can be removed at negligible cost.

Doing so enables shorter, intuitive proofs.

Interference-free lemmas are possible for free.

There is no need to perform fixpoint core generation, even if not using WSR.

There is a clear, mutation-based semantics for interference.

Future directions
Developing a proof format and proof checkerwith state-of-the-art efficiency.

Can we improve on SDCL-like methods with WSR?

Can we use themutation framework for QBF interference?

... andmaybe, potentially, perhaps, possibly, SMT/FOL?

13



Takeaways and future directions

Existing interference rules are unnecessarily restrictive, and those restrictions
can be removed at negligible cost.

Doing so enables shorter, intuitive proofs.

Interference-free lemmas are possible for free.

There is no need to perform fixpoint core generation, even if not using WSR.

There is a clear, mutation-based semantics for interference.

Future directions
Developing a proof format and proof checkerwith state-of-the-art efficiency.

Can we improve on SDCL-like methods with WSR?

Can we use themutation framework for QBF interference?

... andmaybe, potentially, perhaps, possibly, SMT/FOL?

13



Takeaways and future directions

Existing interference rules are unnecessarily restrictive, and those restrictions
can be removed at negligible cost.

Doing so enables shorter, intuitive proofs.

Interference-free lemmas are possible for free.

There is no need to perform fixpoint core generation, even if not using WSR.

There is a clear, mutation-based semantics for interference.

Future directions
Developing a proof format and proof checkerwith state-of-the-art efficiency.

Can we improve on SDCL-like methods with WSR?

Can we use themutation framework for QBF interference?

... andmaybe, potentially, perhaps, possibly, SMT/FOL?

13


