On the complexity of ~-DQBF

Long-Hin Fung, Tony Tan
National Taiwan University

The 26th International Conference on Theory and Applications of Satisfiability Testing
04 - 08 July 2023
Alghero, Italy

DQBF: Dependency Quantified Boolean Formula

QBF: VxiVxoVxs dyi VxaVxs dyr @
The value of y; is a function on xi, x2, x3, i.e., depends on all x1, x2, x3.

The value of y» is a function on xi,..., xs.

DQBF: Vx1VxoVxs Jy1(x1, x3) VxaVxs Jya(x2, x3,x5) ¢
The value of y; is a function on xi, x3.

The value of y» is a function on x2, x3, Xs.

'Theorem (Patterson and Reif, 1979)
Checking whether a DQBF formula is true or not is NEXP-complete.

A lot of research on DQBF since 2012 and there is DQBF track in SAT
competition.

2/31

The theme of this talk — The intuitive version

= DQBF = SAT (in succinct form).
This has been observed by many researchers.

(Bubeck 2010, Frohlich, et. al. 2014, Balabanov, Jiang 2015, et. al.)

= Many results on SAT also hold for DQBF.

3/31

Preliminaries

(Def.) DQBF: Vx1 -V, Iya(z1) - 3ve(zi) @
where each z; C {x1,...,Xn}.

We call it k-DQBF.

(Def.) It is satisfiable if there is (fi,. .., fx) where each f; is a boolean function
fi: {0,1}" — {0, 1} such that ¢ is a tautology when y; is replaced with fi(Z),
and n; is the length of z.

(Def.) The number of solutions := The number of different (f,.. ., fi).

(Def.) sat(DQBF): On input DQBF, decide if it is satisfiable.

(Def.) sat(k-DQBF): Restricted to k-DQBF.

4/31

Observation: ~-DQBF = k-CNF (in succinct form)

(Expansion) Vxq - - - Vx, 3y1(z1) - - - yw(2«) ¢ is equivalent to:

N\ e la/a,. . xnfan yi/fi(@), -, v/ (@)

ap---ap€{0,1}"

where each i is a1 - - - anl3;
Each £i(¢;) is treated as a boolean variable.

For each a; - - - a,, the formula:

%2 [X1/EJ17 . 7Xn/a,,,_)/1/1(1(?.'1), - ,yk/fk(Ek)]

is a formula with k variables.

It can be rewritten as k-CNF formula, e.g., by building the truth table.

A clause for each row (in the truth table) with 0 value.

5/31

Observation: k-DQBF = k-CNF (in succinct form) — Cont’d

A DQBF:
Vxy - V%0 Iva(z1) - 3vk(zk) @

represents a k-CNF formula:
/\ C:a,B
aj---apby b €{0,1}7K sit. p(ay---apby -+ bk)=0
where G,z is a clause with variables £ (C1), ..., fu(ck):
= If b; =0, then fi(¢) is in G
= If bj =1, then =fi(c;) is in C; 3.

(Question) Are there more resemblances between sat(k-DQBF) and k-SAT?

6/31

The main results

| k| sat(kDQBF) | kSAT

coNP-complete trivial
PSPACE-complete | NL-complete
NEXP-complete NP-complete

= Parsimonious polynomial time reduction from sat(DQBF) to sat(3-DQBF).

= Lifting polynomial time (Karp) reductions from SAT to languages in NP to
reductions from DQBF to languages in NEXP.

= Reductions from languages in NTIME[t(n)] to 3-DQBF as well as from
languages in NSPACE([s(n)] to 2-DQBF.

7/31

The main results

| k| sat(kDQBF) | kSAT

coNP-complete trivial
PSPACE-complete | NL-complete
NEXP-complete NP-complete

= Parsimonious polynomial time reduction from sat(DQBF) to sat(3-DQBF).

= Lifting polynomial time (Karp) reductions from SAT to languages in NP to
reductions from DQBF to languages in NEXP.

= Reductions from languages in NTIME[t(n)] to 3-DQBF as well as from
languages in NSPACE([s(n)] to 2-DQBF.

8/31

sat(1-DQBF) is coNP-complete
(Fact) 1-CNF formula €1 A €2 A --- A {n is not satisfiable iff ¢; = —¢;, for
some i, j.

A 1-DQBF: Vx; - - - Vx, 3y(Z) ¢ represents a 1-CNF formula:

A Cor-anb

ay---anb€{0,1}1 st. p(ay---apb)=0

(coNP-membership) The NP algorithm for non-satisfiability:

On input Vxi - - - Vx,3y(2) -
= Guess two assignments (ai, ..., an, 0) and (&, -, a}, 1) such that:
ai---anlz = 3,1"'3;‘2

= Verify that they are both non-satisfying assignments of ¢.

9/31

The main results

| k| sat(kDQBF) | kSAT

coNP-complete trivial
PSPACE-complete | NL-complete
NEXP-complete NP-complete

= Parsimonious polynomial time reduction from sat(DQBF) to sat(3-DQBF).

= Lifting polynomial time (Karp) reductions from SAT to languages in NP to
reductions from DQBF to languages in NEXP.

= Reductions from languages in NTIME[t(n)] to 3-DQBF as well as from
languages in NSPACE([s(n)] to 2-DQBF.

10/31

The main results

| k| sat(kDQBF) | kSAT

coNP-complete trivial
PSPACE-complete | NL-complete
NEXP-complete NP-complete

= Parsimonious polynomial time reduction from sat(DQBF) to sat(3-DQBF).

= Lifting polynomial time (Karp) reductions from SAT to languages in NP to
reductions from DQBF to languages in NEXP.

= Reductions from languages in NTIME[t(n)] to 3-DQBF as well as from
languages in NSPACE([s(n)] to 2-DQBF.

11/31

sat(2-DQBF) is PSPACE-complete

(Membership) Use the same idea that 2-SAT is NL-complete.

2-CNF formula with variables w1, ..., up:
/\ (ix — Li2) where each (1, (;, are literals
1<i<m
It is a graph with nodes w1, ..., un, 21, ..., Uy,

It is not satisfiable iff there is a path from a variable u to —u and vice versa.

(Algo for sat(2-DQBF)) On 2-DQBF Vx; - - - Vx,3y1(z1)3y2(22) -

= Guess a variable f;(¢).

= Guess a path from £(€) to —fi(c) and vice versa.
The edges correspond to the clauses C,...a,5,, With (a1 - - a,b1b2) = 0.

12/31

sat(2-DQBF) is PSPACE-complete — Cont’d
(Hardness) Reduction from 2-colorability in succinct representation.

(Def.) A (boolean) circuit C(Xi1,X2) represents a graph G(C), where X1, X, are
vectors of n boolean variables:

= The set of vertices is {0,1}".
= (u,v) is an edge iff C(u,v) = 1.

Succinct 2-colorability: On input circuit C, decide if G(C) is 2-colorable.

'Theorem (Papadimitriou and Yannakakis, 1986)
Succinct 2-colorability is PSPACE-complete.

13/31

(Main idea) When the set of vertices is {0,1}", view a coloring as a function
f:{0,1}" — {0,1}.
(The reduction) On input circuit C(x1,*2), output the following DQBF:

V1 V2 Hyl()_<1)3y2()_<2) XX1=X — 1=y
A\ C()_(l,)_(Q) — W 75 ¥

'Theorem
 sat(2-DQBF) is PSPACE-complete.

14/31

The main results

| k| sat(kDQBF) | kSAT

coNP-complete trivial
PSPACE-complete | NL-complete
NEXP-complete NP-complete

= Parsimonious polynomial time reduction from sat(DQBF) to sat(3-DQBF).

= Lifting polynomial time (Karp) reductions from SAT to languages in NP to
reductions from DQBF to languages in NEXP.

= Reductions from languages in NTIME[t(n)] to 3-DQBF as well as from
languages in NSPACE([s(n)] to 2-DQBF.

15/31

The main results

| k| sat(kDQBF) | kSAT

coNP-complete trivial
PSPACE-complete | NL-complete
NEXP-complete NP-complete

= Parsimonious polynomial time reduction from sat(DQBF) to sat(3-DQBF).

= Lifting polynomial time (Karp) reductions from SAT to languages in NP to
reductions from DQBF to languages in NEXP.

= Reductions from languages in NTIME[t(n)] to 3-DQBF as well as from
languages in NSPACE([s(n)] to 2-DQBF.

16/31

The main results

| k| sat(kDQBF) | kSAT

coNP-complete trivial
PSPACE-complete | NL-complete
NEXP-complete NP-complete

= Parsimonious polynomial time reduction from sat(DQBF) to sat(3-DQBF).

= Lifting polynomial time (Karp) reductions from SAT to languages in NP to
reductions from DQBF to languages in NEXP.

= Reductions from languages in NTIME[t(n)] to 3-DQBF as well as from
languages in NSPACE([s(n)] to 2-DQBF.

17/31

Parsimonious polynomial time reduction from sat(DQBF) to sat(3-DQBF)

Vxy - Vxp 3ya(z1) - 3vi(ze) »

Combine f, - - - , fi into a function f: {0,1}""% — {0, 1} such that
f(3, b) = 1if and only if b; = f(alz,)

However, we can't express for any 3, there is exactly one b such that f(a, E) = 1 with DQBF

Construct the monotonic encoding g : {0,1}"% — {0,1} of fi, - - - , fi such that

= For every a € {0,1}", g(3, -) is monotonic

_ 0 ifEc<ipb
« If 3,b) = 1, then g(3,¢) = o e
1 ifb<jxc
x1 cee Xn vy cee Vi f g
0 0 0 0
0 0
0 0 uy upe 1 1
0 1
0 0 1 1 0 1

18/31

Parsimonious polynomial time reduction from sat(DQBF) to sat(3-DQBF)

VXl e VXn 3)/1(21) e Hyk(ik) %]

Combine fi, - - - , fi into a function f: {0,1}""% — {0,1} such that
f(3,b) = 1 if and only if b; = fi(33)

However, we can't express for any 3, there is exactly one b such that f(a, 1_3) = 1 with DQBF

Construct the monotonic encoding g : {0,1}"** — {0,1} of fi,- - - , fi such that

= For every a € {0,1}", g(3, -) is monotonic

_ 0 ifc b
s If f3,b) = 1, then g(3,¢) = e <
1 ifb<jxcC
(The reduction) Output the following DQBF:
Vxi oo VxpVvy - - Vg in cee Vx;Vvi s \V/VL Vx;l .- -Vx;/Vvil - 'VVL/
Iy1(x; and v;) Eyz(x/{ and v:) Hy3(x;/ and v;l)
n=y=8 N y=f

19/31

The main results

| k| sat(kDQBF) | kSAT

coNP-complete trivial
PSPACE-complete | NL-complete
NEXP-complete NP-complete

= Parsimonious polynomial time reduction from sat(DQBF) to sat(3-DQBF).

= Lifting polynomial time (Karp) reductions from SAT to languages in NP to
reductions from DQBF to languages in NEXP.

= Reductions from languages in NTIME[t(n)] to 3-DQBF as well as from
languages in NSPACE([s(n)] to 2-DQBF.

20/31

The main results

| k| sat(kDQBF) | kSAT

coNP-complete trivial
PSPACE-complete | NL-complete
NEXP-complete NP-complete

= Parsimonious polynomial time reduction from sat(DQBF) to sat(3-DQBF).

= Lifting polynomial time (Karp) reductions from SAT to languages in NP to
reductions from DQBF to languages in NEXP.

= Reductions from languages in NTIME[t(n)] to 3-DQBF as well as from
languages in NSPACE([s(n)] to 2-DQBF.

21/31

The notion of projections

'Theorem (Papadimitriou, Yannakakis 1986)
If there is a projection from SAT to a graph problem P, then the succinct
_version of P is NEXP-hard.

(Recall) A (boolean) circuit C(x1,2) represents a graph G(C), where X1, x> are
vectors of n boolean variables:

= The set of vertices is {0,1}".
= (u,v) is an edge iff C(u,v) = 1.

(Def.) The succinct version of a graph problem P: The input is a circuit
representing a graph.

22/31

The notion of projections — continued

(Recall) A polynomial time (Karp) reduction is a function
F:{0,1}* — {0,1}" computable in polynomial time such that for every
we {0,1}", F(w) is of length p(|w|) for some polynomial p.

(Def.) Fis a projection, if there is a polynomial time algorithm A:
Input: 17 and an index j where 1 < j < p(n).
Output: 0, 1, Xj, or 1 — X;, where 1 < i < n such that:

If z; = A(1",)) for each 1 < j < p(n), then for every wi --- w, € {0,1}":

F(Wl"-W,,):Z1---Zp(,,)X/ Xo/
1/W1,---3XAn/ Wn

23/31

Lifting projections in NP to reductions in NEXP

'Theorem (Papadimitriou, Yannakakis 1986)
If there is a projection from SAT to a graph problem P, then the succinct
_version of P is NEXP-hard.

The projection can be turned into a polynomial time reduction from an
NEXP-complete problem to succinct P.

We observe that the projection can be turned into a reduction from sat(DQBF)
to succinct P.

 Corollary
If there is a projection from SAT to a graph problem P, then there is a
polynomial time reduction from sat(DQBF) to succinct P.

24/31

The main results

| k| sat(kDQBF) | kSAT

coNP-complete trivial
PSPACE-complete | NL-complete
NEXP-complete NP-complete

= Parsimonious polynomial time reduction from sat(DQBF) to sat(3-DQBF).

= Lifting polynomial time (Karp) reductions from SAT to languages in NP to
reductions from DQBF to languages in NEXP.

= Reductions from languages in NTIME[t(n)] to 3-DQBF as well as from
languages in NSPACE([s(n)] to 2-DQBF.

25/31

The main results

| k| sat(kDQBF) | kSAT

coNP-complete trivial
PSPACE-complete | NL-complete
NEXP-complete NP-complete

= Parsimonious polynomial time reduction from sat(DQBF) to sat(3-DQBF).

= Lifting polynomial time (Karp) reductions from SAT to languages in NP to
reductions from DQBF to languages in NEXP.

= Reductions from languages in NTIME[t(n)] to 3-DQBF as well as from
languages in NSPACE[s(n)] to 2-DQBF.

26/31

On the class NTIME[t(n)]

'Theorem (Chen, et. al., 2022)

For every L € NTIME[t(n)], there is a reduction from L to sat(DQBF) using
O(log t(n)) universal variables and O(1) existential variables.

The runtime of the reduction is O(max{n, poly(log t(n))}).

The constant O(1) depends on L.

Using our previous reduction, we obtain the following corollary

/Corollary

For every L € NTIME[t(n)], there is a reduction from L to sat(3-DQBF)
using O(log t(n)) universal variables.

The runtime of the reduction is O(max{n, poly(log t(n))}).

27/31

On the class NSPACE[s(n)]

'Theorem
For every L € NSPACE[s(n)], there is a deterministic algorithm A with run
time O(s(n)?) such that:

On input w, it outputs a 2-DQBF W with O(s(|w|)) universal variables such
\that w € L if and only if W is not satisfiable.

(Intuitive proof) Suppose M decides L in space s(n). Reduce it to 2-CNF
formula (of size exponential in s(n)).

On input word w, construct the formula F, that states the following:

= The variables are X¢, where the index C ranges over all the configurations
of M on w.

= For every two configurations C; and G, where G, is the next configuration
of Ci, we have an implication X¢, — Xc,.

= For the initial configuration Cp, we have the implication -X¢, — X¢,.

= For the initial configuration Cy and the accepting configuration C,cc, we

have the implication Xc,, = —Xg,.

acc

M accepts w if and only if F,, is not satisfiable.

28/31

On the class NSPACE[s(n)] — cont'd
(Modifying it to 2-DQBF) Encode each configuration C as 0-1 strings of
length O(s(n)).

Represent each variable X¢ as variable f{C).

The desired 2-DQBF is:
VxiVe Jyi(x)Ie() =% = yi=y) A ¢
where ¢ states the following:

(b) If X2 is the next configuration of X1, then y1 — y».
(c) If X1 and x> encode the initial configuration, then —y; — y».

(d) If X1 encodes the initial configuration and x> encodes the accepting
configuration, then y» — —y;.

29/31

Recap

| k| sat(kDQBF) | kSAT

coNP-complete trivial
PSPACE-complete | NL-complete
NEXP-complete NP-complete

Parsimonious polynomial time reduction from sat(DQBF) to sat(3-DQBF).

Lifting polynomial time (Karp) reductions from SAT to languages in NP to
reductions from DQBF to languages in NEXP.

Reductions from languages in NTIME[t(n)] to 3-DQBF as well as from
languages in NSPACE([s(n)] to 2-DQBF.

30/31

Concluding remarks

Our hope:

= |deas used to develop SAT solvers can be used for DQBF and vice versa.
= Richer benchmarks and applications of DQBF solvers.

= DQBF can be the problem in NEXP, just like SAT in NP and QBF in
PSPACE.

Thank you very much!

31/31

