
On the complexity of k-DQBF

Long-Hin Fung, Tony Tan
National Taiwan University

The 26th International Conference on Theory and Applications of Satisfiability Testing
04 - 08 July 2023
Alghero, Italy



DQBF: Dependency Quantified Boolean Formula

QBF: ∀x1∀x2∀x3 ∃y1 ∀x4∀x5 ∃y2 φ

The value of y1 is a function on x1, x2, x3, i.e., depends on all x1, x2, x3.

The value of y2 is a function on x1, . . . , x5.

DQBF: ∀x1∀x2∀x3 ∃y1(x1, x3) ∀x4∀x5 ∃y2(x2, x3, x5) φ

The value of y1 is a function on x1, x3.

The value of y2 is a function on x2, x3, x5.

Theorem (Patterson and Reif, 1979)
Checking whether a DQBF formula is true or not is NEXP-complete.

A lot of research on DQBF since 2012 and there is DQBF track in SAT
competition.
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The theme of this talk — The intuitive version

• DQBF = SAT (in succinct form).

This has been observed by many researchers.
(Bubeck 2010, Frohlich, et. al. 2014, Balabanov, Jiang 2015, et. al.)

• Many results on SAT also hold for DQBF.
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Preliminaries

(Def.) DQBF: ∀x1 · · · ∀xn ∃y1(z̄1) · · · ∃yk(z̄k) φ

where each z̄i ⊆ {x1, . . . , xn}.

We call it k-DQBF.

(Def.) It is satisfiable if there is (f1, . . . , fk) where each fi is a boolean function
fi : {0, 1}ni → {0, 1} such that φ is a tautology when yi is replaced with fi(z̄i),

and ni is the length of z̄i.

(Def.) The number of solutions := The number of different (f1, . . . , fk).

(Def.) sat(DQBF): On input DQBF, decide if it is satisfiable.

(Def.) sat(k-DQBF): Restricted to k-DQBF.
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Observation: k-DQBF = k-CNF (in succinct form)

(Expansion) ∀x1 · · · ∀xn ∃y1(z̄1) · · · ∃yk(z̄k) φ is equivalent to:∧
a1···an∈{0,1}n

φ [x1/a1, . . . , xn/an, y1/f1(c̄1), . . . , yk/fk(c̄k)]

where each c̄i is a1 · · · an|z̄i

Each fi(c̄i) is treated as a boolean variable.

For each a1 · · · an, the formula:

φ [x1/a1, . . . , xn/an, y1/f1(c̄1), . . . , yk/fk(c̄k)]

is a formula with k variables.

It can be rewritten as k-CNF formula, e.g., by building the truth table.

A clause for each row (in the truth table) with 0 value.
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Observation: k-DQBF = k-CNF (in succinct form) – Cont’d

A DQBF:
∀x1 · · · ∀xn ∃y1(z̄1) · · · ∃yk(z̄k) φ

represents a k-CNF formula: ∧
a1···anb1···bk∈{0,1}n+k s.t. φ(a1···anb1···bk)=0

Cā,b̄

where Cā,b̄ is a clause with variables f1(c̄1), . . . , fk(c̄k):

• If bi = 0, then fi(c̄i) is in Cā,b̄.
• If bi = 1, then ¬fi(c̄i) is in Cā,b̄.

(Question) Are there more resemblances between sat(k-DQBF) and k-SAT?
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The main results

k sat(k-DQBF) k-SAT

1 coNP-complete trivial
2 PSPACE-complete NL-complete
3 NEXP-complete NP-complete

• Parsimonious polynomial time reduction from sat(DQBF) to sat(3-DQBF).

• Lifting polynomial time (Karp) reductions from SAT to languages in NP to
reductions from DQBF to languages in NEXP.

• Reductions from languages in NTIME[t(n)] to 3-DQBF as well as from
languages in NSPACE[s(n)] to 2-DQBF.
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sat(1-DQBF) is coNP-complete

(Fact) 1-CNF formula ℓ1 ∧ ℓ2 ∧ · · · ∧ ℓm is not satisfiable iff ℓi = ¬ℓj, for
some i, j.

A 1-DQBF: ∀x1 · · · ∀xn ∃y(z̄) φ represents a 1-CNF formula:∧
a1···anb∈{0,1}n+1 s.t. φ(a1···anb)=0

Ca1···anb

(coNP-membership) The NP algorithm for non-satisfiability:

On input ∀x1 · · · ∀xn∃y(z̄) φ:

• Guess two assignments (a1, . . . , an, 0) and (a′
1, · · · , a′

n, 1) such that:

a1 · · · an|z̄ = a′
1 · · · a′

n|z̄

• Verify that they are both non-satisfying assignments of φ.
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sat(2-DQBF) is PSPACE-complete

(Membership) Use the same idea that 2-SAT is NL-complete.

2-CNF formula with variables u1, . . . , un:∧
1⩽i⩽m

(ℓi,1 → ℓi,2) where each ℓi,1, ℓi,2 are literals

It is a graph with nodes u1, . . . , un,¬u1, . . . ,¬un.

It is not satisfiable iff there is a path from a variable u to ¬u and vice versa.

(Algo for sat(2-DQBF)) On 2-DQBF ∀x1 · · · ∀xn∃y1(z̄1)∃y2(z̄2) φ:

• Guess a variable fi(c̄).
• Guess a path from fi(c̄) to ¬fi(c̄) and vice versa.

The edges correspond to the clauses Ca1···anb1b2 with φ(a1 · · · anb1b2) = 0.
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sat(2-DQBF) is PSPACE-complete — Cont’d

(Hardness) Reduction from 2-colorability in succinct representation.

(Def.) A (boolean) circuit C(x̄1, x̄2) represents a graph G(C), where x̄1, x̄2 are
vectors of n boolean variables:

• The set of vertices is {0, 1}n.
• (u, v) is an edge iff C(u, v) = 1.

Succinct 2-colorability: On input circuit C, decide if G(C) is 2-colorable.

Theorem (Papadimitriou and Yannakakis, 1986)
Succinct 2-colorability is PSPACE-complete.
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(Main idea) When the set of vertices is {0, 1}n, view a coloring as a function
f : {0, 1}n → {0, 1}.

(The reduction) On input circuit C(x̄1, x̄2), output the following DQBF:

∀x̄1∀x̄2 ∃y1(x̄1)∃y2(x̄2) x̄1 = x̄2 → y1 = y2

∧ C(x̄1, x̄2) → y1 ̸= y2

Theorem
sat(2-DQBF) is PSPACE-complete.
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Parsimonious polynomial time reduction from sat(DQBF) to sat(3-DQBF)

∀x1 · · · ∀xn ∃y1(z̄1) · · · ∃yk(z̄k) φ

Combine f1, · · · , fk into a function f : {0, 1}n+k → {0, 1} such that

f(ā, b̄) = 1 if and only if bi = fi(ā|z̄i )

However, we can’t express for any ā, there is exactly one b̄ such that f(ā, b̄) = 1 with DQBF

Construct the monotonic encoding g : {0, 1}n+k → {0, 1} of f1, · · · , fk such that

• For every ā ∈ {0, 1}n, g(ā, ·) is monotonic

• If f(ā, b̄) = 1, then g(ā, c̄) =
{

0 if c̄ <lex b̄
1 if b̄ ⩽lex c̄
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Parsimonious polynomial time reduction from sat(DQBF) to sat(3-DQBF)

∀x1 · · · ∀xn ∃y1(z̄1) · · · ∃yk(z̄k) φ

Combine f1, · · · , fk into a function f : {0, 1}n+k → {0, 1} such that

f(ā, b̄) = 1 if and only if bi = fi(ā|z̄i )

However, we can’t express for any ā, there is exactly one b̄ such that f(ā, b̄) = 1 with DQBF

Construct the monotonic encoding g : {0, 1}n+k → {0, 1} of f1, · · · , fk such that

• For every ā ∈ {0, 1}n, g(ā, ·) is monotonic

• If f(ā, b̄) = 1, then g(ā, c̄) =
{

0 if c̄ <lex b̄
1 if b̄ ⩽lex c̄

(The reduction) Output the following DQBF:

∀x1 · · · ∀xn∀v1 · · · ∀vk ∀x′1 · · · ∀x′n∀v′1 · · · ∀v′k ∀x′′1 · · · ∀x′′n ∀v′′1 · · · ∀v′′k
∃y1(xi and vi) ∃y2(x′i and v′i ) ∃y3(x′′i and v′′i )

y1 = y2 = g ∧ y3 = f
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The notion of projections

Theorem (Papadimitriou, Yannakakis 1986)
If there is a projection from SAT to a graph problem P, then the succinct
version of P is NEXP-hard.

(Recall) A (boolean) circuit C(x̄1, x̄2) represents a graph G(C), where x̄1, x̄2 are
vectors of n boolean variables:

• The set of vertices is {0, 1}n.
• (u, v) is an edge iff C(u, v) = 1.

(Def.) The succinct version of a graph problem P: The input is a circuit
representing a graph.
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The notion of projections – continued

(Recall) A polynomial time (Karp) reduction is a function
F : {0, 1}∗ → {0, 1}∗ computable in polynomial time such that for every
w ∈ {0, 1}∗, F(w) is of length p(|w|) for some polynomial p.

(Def.) F is a projection, if there is a polynomial time algorithm A:

Input: 1n and an index j where 1 ⩽ j ⩽ p(n).

Output: 0, 1, Xi, or 1 − Xi, where 1 ⩽ i ⩽ n such that:

If zj = A(1n, j) for each 1 ⩽ j ⩽ p(n), then for every w1 · · ·wn ∈ {0, 1}n:

F(w1 · · ·wn) = z1 · · · zp(n)

∣∣∣
X1/w1,...,Xn/wn
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Lifting projections in NP to reductions in NEXP

Theorem (Papadimitriou, Yannakakis 1986)
If there is a projection from SAT to a graph problem P, then the succinct
version of P is NEXP-hard.

The projection can be turned into a polynomial time reduction from an
NEXP-complete problem to succinct P.

We observe that the projection can be turned into a reduction from sat(DQBF)
to succinct P.

Corollary
If there is a projection from SAT to a graph problem P, then there is a
polynomial time reduction from sat(DQBF) to succinct P.
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On the class NTIME[t(n)]

Theorem (Chen, et. al., 2022)
For every L ∈ NTIME[t(n)], there is a reduction from L to sat(DQBF) using
O(log t(n)) universal variables and O(1) existential variables.
The runtime of the reduction is O(max{n, poly(log t(n))}).

The constant O(1) depends on L.

Using our previous reduction, we obtain the following corollary

Corollary
For every L ∈ NTIME[t(n)], there is a reduction from L to sat(3-DQBF)
using O(log t(n)) universal variables.
The runtime of the reduction is O(max{n, poly(log t(n))}).
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On the class NSPACE[s(n)]

Theorem
For every L ∈ NSPACE[s(n)], there is a deterministic algorithm A with run
time O(s(n)2) such that:
On input w, it outputs a 2-DQBF Ψ with O(s(|w|)) universal variables such
that w ∈ L if and only if Ψ is not satisfiable.

(Intuitive proof) Suppose M decides L in space s(n). Reduce it to 2-CNF
formula (of size exponential in s(n)).

On input word w, construct the formula Fw that states the following:

• The variables are XC, where the index C ranges over all the configurations
of M on w.

• For every two configurations C1 and C2 where C2 is the next configuration
of C1, we have an implication XC1 → XC2 .

• For the initial configuration C0, we have the implication ¬XC0 → XC0 .
• For the initial configuration C0 and the accepting configuration Cacc, we

have the implication XCacc → ¬XC0 .

M accepts w if and only if Fw is not satisfiable.
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On the class NSPACE[s(n)] – cont’d

(Modifying it to 2-DQBF) Encode each configuration C as 0-1 strings of
length O(s(n)).

Represent each variable XC as variable f(C).

The desired 2-DQBF is:

∀x̄1∀x̄2 ∃y1(x̄1)∃y2(x̄2) (x̄1 = x̄2 → y1 = y2) ∧ φ

where φ states the following:

(b) If x̄2 is the next configuration of x̄1, then y1 → y2.
(c) If x̄1 and x̄2 encode the initial configuration, then ¬y1 → y2.
(d) If x̄1 encodes the initial configuration and x̄2 encodes the accepting

configuration, then y2 → ¬y1.
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Recap

k sat(k-DQBF) k-SAT

1 coNP-complete trivial
2 PSPACE-complete NL-complete
3 NEXP-complete NP-complete

• Parsimonious polynomial time reduction from sat(DQBF) to sat(3-DQBF).
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• Reductions from languages in NTIME[t(n)] to 3-DQBF as well as from
languages in NSPACE[s(n)] to 2-DQBF.
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Concluding remarks

Our hope:

• Ideas used to develop SAT solvers can be used for DQBF and vice versa.
• Richer benchmarks and applications of DQBF solvers.
• DQBF can be the problem in NEXP, just like SAT in NP and QBF in

PSPACE.

Thank you very much!
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