
Even shorter proofs without new variables

Adrián Rebola-Pardo

Vienna University of Technology
Johannes Kepler University

26th SAT Conference
Alghero, Italy
July 6th, 2023
Supported by LIT AI Lab (State of Upper Austria), FWFW1255-N23, WWTF VRG11-005,
WWTF ICT15-103, and Microsoft Research PhD Programme



Problem 1: swapping pigeons

The pigeonhole problem PHP(𝒏)

Can we fit 𝒏 pigeons into 𝒏 − 𝟏 holes?

w.l.o.g. pigeon 𝟏 is not in hole 𝒏 − 𝟏•
otherwise swap pigeons 𝟏 and 𝒏

⋮
w.l.o.g. pigeon 𝒏 − 𝟏 is not in hole 𝒏 − 𝟏•
pigeon 𝟏 is in some hole 𝟏,… , 𝒏 − 𝟐•
⋮
pigeon 𝒏 − 𝟏 is in some hole 𝟏,… , 𝒏 − 𝟐•
solve PHP(𝒏 − 𝟏)•

How long are propositional proofs?

resolution exponential lower bound
classical separation result

extended resolution 𝑶(𝒏𝟒)
new variables as definitions

DPR 𝑶(𝒏𝟑)
DPR conditionally assigns variables
w.l.o.g to⊤/⊥

𝑶(𝒏) iterations
𝑶(𝒏) pigeons/iteration

𝑶(𝒏) conditional w.l.o.g.s/pigeon

DSR conditionally assigns variables
w.l.o.g. to literals/⊤/⊥

we can swap variables in𝑶(𝟏)!

why does this fail?

how do wemake it work?

a new proof systemwith
one-instruction variable swaps!

we get refutations of PHP(𝒏)
with𝑶(𝒏𝟐) instructions! :)

we get refutations of PHP(𝒏)
with𝑶(𝒏𝟐) instructions, right?

1



Problem 1: swapping pigeons

The pigeonhole problem PHP(𝒏)
Can we fit 𝒏 pigeons into 𝒏 − 𝟏 holes?

w.l.o.g. pigeon 𝟏 is not in hole 𝒏 − 𝟏•
otherwise swap pigeons 𝟏 and 𝒏

⋮
w.l.o.g. pigeon 𝒏 − 𝟏 is not in hole 𝒏 − 𝟏•
pigeon 𝟏 is in some hole 𝟏,… , 𝒏 − 𝟐•
⋮
pigeon 𝒏 − 𝟏 is in some hole 𝟏,… , 𝒏 − 𝟐•
solve PHP(𝒏 − 𝟏)•

How long are propositional proofs?

resolution exponential lower bound
classical separation result

extended resolution 𝑶(𝒏𝟒)
new variables as definitions

DPR 𝑶(𝒏𝟑)
DPR conditionally assigns variables
w.l.o.g to⊤/⊥

𝑶(𝒏) iterations
𝑶(𝒏) pigeons/iteration

𝑶(𝒏) conditional w.l.o.g.s/pigeon

DSR conditionally assigns variables
w.l.o.g. to literals/⊤/⊥

we can swap variables in𝑶(𝟏)!

why does this fail?

how do wemake it work?

a new proof systemwith
one-instruction variable swaps!

we get refutations of PHP(𝒏)
with𝑶(𝒏𝟐) instructions! :)

we get refutations of PHP(𝒏)
with𝑶(𝒏𝟐) instructions, right?

1



Problem 1: swapping pigeons

The pigeonhole problem PHP(𝒏)
Can we fit 𝒏 pigeons into 𝒏 − 𝟏 holes?

w.l.o.g. pigeon 𝟏 is not in hole 𝒏 − 𝟏•

otherwise swap pigeons 𝟏 and 𝒏
⋮
w.l.o.g. pigeon 𝒏 − 𝟏 is not in hole 𝒏 − 𝟏•
pigeon 𝟏 is in some hole 𝟏,… , 𝒏 − 𝟐•
⋮
pigeon 𝒏 − 𝟏 is in some hole 𝟏,… , 𝒏 − 𝟐•
solve PHP(𝒏 − 𝟏)•

How long are propositional proofs?

resolution exponential lower bound
classical separation result

extended resolution 𝑶(𝒏𝟒)
new variables as definitions

DPR 𝑶(𝒏𝟑)
DPR conditionally assigns variables
w.l.o.g to⊤/⊥

𝑶(𝒏) iterations
𝑶(𝒏) pigeons/iteration

𝑶(𝒏) conditional w.l.o.g.s/pigeon

DSR conditionally assigns variables
w.l.o.g. to literals/⊤/⊥

we can swap variables in𝑶(𝟏)!

why does this fail?

how do wemake it work?

a new proof systemwith
one-instruction variable swaps!

we get refutations of PHP(𝒏)
with𝑶(𝒏𝟐) instructions! :)

we get refutations of PHP(𝒏)
with𝑶(𝒏𝟐) instructions, right?

1



Problem 1: swapping pigeons

The pigeonhole problem PHP(𝒏)
Can we fit 𝒏 pigeons into 𝒏 − 𝟏 holes?

w.l.o.g. pigeon 𝟏 is not in hole 𝒏 − 𝟏•

otherwise swap pigeons 𝟏 and 𝒏
⋮
w.l.o.g. pigeon 𝒏 − 𝟏 is not in hole 𝒏 − 𝟏•
pigeon 𝟏 is in some hole 𝟏,… , 𝒏 − 𝟐•
⋮
pigeon 𝒏 − 𝟏 is in some hole 𝟏,… , 𝒏 − 𝟐•
solve PHP(𝒏 − 𝟏)•

How long are propositional proofs?

resolution exponential lower bound
classical separation result

extended resolution 𝑶(𝒏𝟒)
new variables as definitions

DPR 𝑶(𝒏𝟑)
DPR conditionally assigns variables
w.l.o.g to⊤/⊥

𝑶(𝒏) iterations
𝑶(𝒏) pigeons/iteration

𝑶(𝒏) conditional w.l.o.g.s/pigeon

DSR conditionally assigns variables
w.l.o.g. to literals/⊤/⊥

we can swap variables in𝑶(𝟏)!

why does this fail?

how do wemake it work?

a new proof systemwith
one-instruction variable swaps!

we get refutations of PHP(𝒏)
with𝑶(𝒏𝟐) instructions! :)

we get refutations of PHP(𝒏)
with𝑶(𝒏𝟐) instructions, right?

1



Problem 1: swapping pigeons

The pigeonhole problem PHP(𝒏)
Can we fit 𝒏 pigeons into 𝒏 − 𝟏 holes?

w.l.o.g. pigeon 𝟏 is not in hole 𝒏 − 𝟏•

otherwise swap pigeons 𝟏 and 𝒏
⋮
w.l.o.g. pigeon 𝒏 − 𝟏 is not in hole 𝒏 − 𝟏•
pigeon 𝟏 is in some hole 𝟏,… , 𝒏 − 𝟐•
⋮
pigeon 𝒏 − 𝟏 is in some hole 𝟏,… , 𝒏 − 𝟐•
solve PHP(𝒏 − 𝟏)•

How long are propositional proofs?

resolution exponential lower bound
classical separation result

extended resolution 𝑶(𝒏𝟒)
new variables as definitions

DPR 𝑶(𝒏𝟑)
DPR conditionally assigns variables
w.l.o.g to⊤/⊥

𝑶(𝒏) iterations
𝑶(𝒏) pigeons/iteration

𝑶(𝒏) conditional w.l.o.g.s/pigeon

DSR conditionally assigns variables
w.l.o.g. to literals/⊤/⊥

we can swap variables in𝑶(𝟏)!

why does this fail?

how do wemake it work?

a new proof systemwith
one-instruction variable swaps!

we get refutations of PHP(𝒏)
with𝑶(𝒏𝟐) instructions! :)

we get refutations of PHP(𝒏)
with𝑶(𝒏𝟐) instructions, right?

1



Problem 1: swapping pigeons

The pigeonhole problem PHP(𝒏)
Can we fit 𝒏 pigeons into 𝒏 − 𝟏 holes?

w.l.o.g. pigeon 𝟏 is not in hole 𝒏 − 𝟏•
otherwise swap pigeons 𝟏 and 𝒏

⋮
w.l.o.g. pigeon 𝒏 − 𝟏 is not in hole 𝒏 − 𝟏•
pigeon 𝟏 is in some hole 𝟏,… , 𝒏 − 𝟐•
⋮
pigeon 𝒏 − 𝟏 is in some hole 𝟏,… , 𝒏 − 𝟐•
solve PHP(𝒏 − 𝟏)•

How long are propositional proofs?

resolution exponential lower bound
classical separation result

extended resolution 𝑶(𝒏𝟒)
new variables as definitions

DPR 𝑶(𝒏𝟑)
DPR conditionally assigns variables
w.l.o.g to⊤/⊥

𝑶(𝒏) iterations
𝑶(𝒏) pigeons/iteration

𝑶(𝒏) conditional w.l.o.g.s/pigeon

DSR conditionally assigns variables
w.l.o.g. to literals/⊤/⊥

we can swap variables in𝑶(𝟏)!

why does this fail?

how do wemake it work?

a new proof systemwith
one-instruction variable swaps!

we get refutations of PHP(𝒏)
with𝑶(𝒏𝟐) instructions! :)

we get refutations of PHP(𝒏)
with𝑶(𝒏𝟐) instructions, right?

1



Problem 1: swapping pigeons

The pigeonhole problem PHP(𝒏)
Can we fit 𝒏 pigeons into 𝒏 − 𝟏 holes?

w.l.o.g. pigeon 𝟏 is not in hole 𝒏 − 𝟏•
otherwise swap pigeons 𝟏 and 𝒏

⋮
w.l.o.g. pigeon 𝒏 − 𝟏 is not in hole 𝒏 − 𝟏•

pigeon 𝟏 is in some hole 𝟏,… , 𝒏 − 𝟐•
⋮
pigeon 𝒏 − 𝟏 is in some hole 𝟏,… , 𝒏 − 𝟐•
solve PHP(𝒏 − 𝟏)•

How long are propositional proofs?

resolution exponential lower bound
classical separation result

extended resolution 𝑶(𝒏𝟒)
new variables as definitions

DPR 𝑶(𝒏𝟑)
DPR conditionally assigns variables
w.l.o.g to⊤/⊥

𝑶(𝒏) iterations
𝑶(𝒏) pigeons/iteration

𝑶(𝒏) conditional w.l.o.g.s/pigeon

DSR conditionally assigns variables
w.l.o.g. to literals/⊤/⊥

we can swap variables in𝑶(𝟏)!

why does this fail?

how do wemake it work?

a new proof systemwith
one-instruction variable swaps!

we get refutations of PHP(𝒏)
with𝑶(𝒏𝟐) instructions! :)

we get refutations of PHP(𝒏)
with𝑶(𝒏𝟐) instructions, right?

1



Problem 1: swapping pigeons

The pigeonhole problem PHP(𝒏)
Can we fit 𝒏 pigeons into 𝒏 − 𝟏 holes?

w.l.o.g. pigeon 𝟏 is not in hole 𝒏 − 𝟏•
otherwise swap pigeons 𝟏 and 𝒏

⋮
w.l.o.g. pigeon 𝒏 − 𝟏 is not in hole 𝒏 − 𝟏•
pigeon 𝟏 is in some hole 𝟏,… , 𝒏 − 𝟐•

⋮
pigeon 𝒏 − 𝟏 is in some hole 𝟏,… , 𝒏 − 𝟐•
solve PHP(𝒏 − 𝟏)•

How long are propositional proofs?

resolution exponential lower bound
classical separation result

extended resolution 𝑶(𝒏𝟒)
new variables as definitions

DPR 𝑶(𝒏𝟑)
DPR conditionally assigns variables
w.l.o.g to⊤/⊥

𝑶(𝒏) iterations
𝑶(𝒏) pigeons/iteration

𝑶(𝒏) conditional w.l.o.g.s/pigeon

DSR conditionally assigns variables
w.l.o.g. to literals/⊤/⊥

we can swap variables in𝑶(𝟏)!

why does this fail?

how do wemake it work?

a new proof systemwith
one-instruction variable swaps!

we get refutations of PHP(𝒏)
with𝑶(𝒏𝟐) instructions! :)

we get refutations of PHP(𝒏)
with𝑶(𝒏𝟐) instructions, right?

1



Problem 1: swapping pigeons

The pigeonhole problem PHP(𝒏)
Can we fit 𝒏 pigeons into 𝒏 − 𝟏 holes?

w.l.o.g. pigeon 𝟏 is not in hole 𝒏 − 𝟏•
otherwise swap pigeons 𝟏 and 𝒏

⋮
w.l.o.g. pigeon 𝒏 − 𝟏 is not in hole 𝒏 − 𝟏•
pigeon 𝟏 is in some hole 𝟏,… , 𝒏 − 𝟐•
⋮
pigeon 𝒏 − 𝟏 is in some hole 𝟏,… , 𝒏 − 𝟐•

solve PHP(𝒏 − 𝟏)•

How long are propositional proofs?

resolution exponential lower bound
classical separation result

extended resolution 𝑶(𝒏𝟒)
new variables as definitions

DPR 𝑶(𝒏𝟑)
DPR conditionally assigns variables
w.l.o.g to⊤/⊥

𝑶(𝒏) iterations
𝑶(𝒏) pigeons/iteration

𝑶(𝒏) conditional w.l.o.g.s/pigeon

DSR conditionally assigns variables
w.l.o.g. to literals/⊤/⊥

we can swap variables in𝑶(𝟏)!

why does this fail?

how do wemake it work?

a new proof systemwith
one-instruction variable swaps!

we get refutations of PHP(𝒏)
with𝑶(𝒏𝟐) instructions! :)

we get refutations of PHP(𝒏)
with𝑶(𝒏𝟐) instructions, right?

1



Problem 1: swapping pigeons

The pigeonhole problem PHP(𝒏)
Can we fit 𝒏 pigeons into 𝒏 − 𝟏 holes?

w.l.o.g. pigeon 𝟏 is not in hole 𝒏 − 𝟏•
otherwise swap pigeons 𝟏 and 𝒏

⋮
w.l.o.g. pigeon 𝒏 − 𝟏 is not in hole 𝒏 − 𝟏•
pigeon 𝟏 is in some hole 𝟏,… , 𝒏 − 𝟐•
⋮
pigeon 𝒏 − 𝟏 is in some hole 𝟏,… , 𝒏 − 𝟐•

solve PHP(𝒏 − 𝟏)•

How long are propositional proofs?

resolution exponential lower bound
classical separation result

extended resolution 𝑶(𝒏𝟒)
new variables as definitions

DPR 𝑶(𝒏𝟑)
DPR conditionally assigns variables
w.l.o.g to⊤/⊥

𝑶(𝒏) iterations
𝑶(𝒏) pigeons/iteration

𝑶(𝒏) conditional w.l.o.g.s/pigeon

DSR conditionally assigns variables
w.l.o.g. to literals/⊤/⊥

we can swap variables in𝑶(𝟏)!

why does this fail?

how do wemake it work?

a new proof systemwith
one-instruction variable swaps!

we get refutations of PHP(𝒏)
with𝑶(𝒏𝟐) instructions! :)

we get refutations of PHP(𝒏)
with𝑶(𝒏𝟐) instructions, right?

1



Problem 1: swapping pigeons

The pigeonhole problem PHP(𝒏)
Can we fit 𝒏 pigeons into 𝒏 − 𝟏 holes?

w.l.o.g. pigeon 𝟏 is not in hole 𝒏 − 𝟏•
otherwise swap pigeons 𝟏 and 𝒏

⋮
w.l.o.g. pigeon 𝒏 − 𝟏 is not in hole 𝒏 − 𝟏•
pigeon 𝟏 is in some hole 𝟏,… , 𝒏 − 𝟐•
⋮
pigeon 𝒏 − 𝟏 is in some hole 𝟏,… , 𝒏 − 𝟐•
solve PHP(𝒏 − 𝟏)•

How long are propositional proofs?

resolution exponential lower bound
classical separation result

extended resolution 𝑶(𝒏𝟒)
new variables as definitions

DPR 𝑶(𝒏𝟑)
DPR conditionally assigns variables
w.l.o.g to⊤/⊥

𝑶(𝒏) iterations
𝑶(𝒏) pigeons/iteration

𝑶(𝒏) conditional w.l.o.g.s/pigeon

DSR conditionally assigns variables
w.l.o.g. to literals/⊤/⊥

we can swap variables in𝑶(𝟏)!

why does this fail?

how do wemake it work?

a new proof systemwith
one-instruction variable swaps!

we get refutations of PHP(𝒏)
with𝑶(𝒏𝟐) instructions! :)

we get refutations of PHP(𝒏)
with𝑶(𝒏𝟐) instructions, right?

1



Problem 1: swapping pigeons

The pigeonhole problem PHP(𝒏)
Can we fit 𝒏 pigeons into 𝒏 − 𝟏 holes?

w.l.o.g. pigeon 𝟏 is not in hole 𝒏 − 𝟏•
otherwise swap pigeons 𝟏 and 𝒏

⋮
w.l.o.g. pigeon 𝒏 − 𝟏 is not in hole 𝒏 − 𝟏•
pigeon 𝟏 is in some hole 𝟏,… , 𝒏 − 𝟐•
⋮
pigeon 𝒏 − 𝟏 is in some hole 𝟏,… , 𝒏 − 𝟐•
solve PHP(𝒏 − 𝟏)•

How long are propositional proofs?

resolution exponential lower bound
classical separation result

extended resolution 𝑶(𝒏𝟒)
new variables as definitions

DPR 𝑶(𝒏𝟑)
DPR conditionally assigns variables
w.l.o.g to⊤/⊥

𝑶(𝒏) iterations
𝑶(𝒏) pigeons/iteration

𝑶(𝒏) conditional w.l.o.g.s/pigeon

DSR conditionally assigns variables
w.l.o.g. to literals/⊤/⊥

we can swap variables in𝑶(𝟏)!

why does this fail?

how do wemake it work?

a new proof systemwith
one-instruction variable swaps!

we get refutations of PHP(𝒏)
with𝑶(𝒏𝟐) instructions! :)

we get refutations of PHP(𝒏)
with𝑶(𝒏𝟐) instructions, right?

1



Problem 1: swapping pigeons

The pigeonhole problem PHP(𝒏)
Can we fit 𝒏 pigeons into 𝒏 − 𝟏 holes?

w.l.o.g. pigeon 𝟏 is not in hole 𝒏 − 𝟏•
otherwise swap pigeons 𝟏 and 𝒏

⋮
w.l.o.g. pigeon 𝒏 − 𝟏 is not in hole 𝒏 − 𝟏•
pigeon 𝟏 is in some hole 𝟏,… , 𝒏 − 𝟐•
⋮
pigeon 𝒏 − 𝟏 is in some hole 𝟏,… , 𝒏 − 𝟐•
solve PHP(𝒏 − 𝟏)•

How long are propositional proofs?

resolution exponential lower bound
classical separation result

extended resolution 𝑶(𝒏𝟒)
new variables as definitions

DPR 𝑶(𝒏𝟑)
DPR conditionally assigns variables
w.l.o.g to⊤/⊥

𝑶(𝒏) iterations
𝑶(𝒏) pigeons/iteration

𝑶(𝒏) conditional w.l.o.g.s/pigeon

DSR conditionally assigns variables
w.l.o.g. to literals/⊤/⊥

we can swap variables in𝑶(𝟏)!

why does this fail?

how do wemake it work?

a new proof systemwith
one-instruction variable swaps!

we get refutations of PHP(𝒏)
with𝑶(𝒏𝟐) instructions! :)

we get refutations of PHP(𝒏)
with𝑶(𝒏𝟐) instructions, right?

1



Problem 1: swapping pigeons

The pigeonhole problem PHP(𝒏)
Can we fit 𝒏 pigeons into 𝒏 − 𝟏 holes?

w.l.o.g. pigeon 𝟏 is not in hole 𝒏 − 𝟏•
otherwise swap pigeons 𝟏 and 𝒏

⋮
w.l.o.g. pigeon 𝒏 − 𝟏 is not in hole 𝒏 − 𝟏•
pigeon 𝟏 is in some hole 𝟏,… , 𝒏 − 𝟐•
⋮
pigeon 𝒏 − 𝟏 is in some hole 𝟏,… , 𝒏 − 𝟐•
solve PHP(𝒏 − 𝟏)•

How long are propositional proofs?

resolution exponential lower bound
classical separation result

extended resolution 𝑶(𝒏𝟒)
new variables as definitions

DPR 𝑶(𝒏𝟑)
DPR conditionally assigns variables
w.l.o.g to⊤/⊥

𝑶(𝒏) iterations
𝑶(𝒏) pigeons/iteration

𝑶(𝒏) conditional w.l.o.g.s/pigeon

DSR conditionally assigns variables
w.l.o.g. to literals/⊤/⊥

we can swap variables in𝑶(𝟏)!

why does this fail?

how do wemake it work?

a new proof systemwith
one-instruction variable swaps!

we get refutations of PHP(𝒏)
with𝑶(𝒏𝟐) instructions! :)

we get refutations of PHP(𝒏)
with𝑶(𝒏𝟐) instructions, right?

1



Problem 1: swapping pigeons

The pigeonhole problem PHP(𝒏)
Can we fit 𝒏 pigeons into 𝒏 − 𝟏 holes?

w.l.o.g. pigeon 𝟏 is not in hole 𝒏 − 𝟏•
otherwise swap pigeons 𝟏 and 𝒏

⋮
w.l.o.g. pigeon 𝒏 − 𝟏 is not in hole 𝒏 − 𝟏•
pigeon 𝟏 is in some hole 𝟏,… , 𝒏 − 𝟐•
⋮
pigeon 𝒏 − 𝟏 is in some hole 𝟏,… , 𝒏 − 𝟐•
solve PHP(𝒏 − 𝟏)•

How long are propositional proofs?

resolution exponential lower bound
classical separation result

extended resolution 𝑶(𝒏𝟒)
new variables as definitions

DPR 𝑶(𝒏𝟑)
DPR conditionally assigns variables
w.l.o.g to⊤/⊥

𝑶(𝒏) iterations
𝑶(𝒏) pigeons/iteration

𝑶(𝒏) conditional w.l.o.g.s/pigeon

DSR conditionally assigns variables
w.l.o.g. to literals/⊤/⊥

we can swap variables in𝑶(𝟏)!

why does this fail?

how do wemake it work?

a new proof systemwith
one-instruction variable swaps!

we get refutations of PHP(𝒏)
with𝑶(𝒏𝟐) instructions! :)

we get refutations of PHP(𝒏)
with𝑶(𝒏𝟐) instructions, right?

1



Problem 1: swapping pigeons

The pigeonhole problem PHP(𝒏)
Can we fit 𝒏 pigeons into 𝒏 − 𝟏 holes?

w.l.o.g. pigeon 𝟏 is not in hole 𝒏 − 𝟏•
otherwise swap pigeons 𝟏 and 𝒏

⋮
w.l.o.g. pigeon 𝒏 − 𝟏 is not in hole 𝒏 − 𝟏•
pigeon 𝟏 is in some hole 𝟏,… , 𝒏 − 𝟐•
⋮
pigeon 𝒏 − 𝟏 is in some hole 𝟏,… , 𝒏 − 𝟐•
solve PHP(𝒏 − 𝟏)•

How long are propositional proofs?

resolution exponential lower bound
classical separation result

extended resolution 𝑶(𝒏𝟒)
new variables as definitions

DPR 𝑶(𝒏𝟑)
DPR conditionally assigns variables
w.l.o.g to⊤/⊥

𝑶(𝒏) iterations
𝑶(𝒏) pigeons/iteration

𝑶(𝒏) conditional w.l.o.g.s/pigeon

DSR conditionally assigns variables
w.l.o.g. to literals/⊤/⊥

we can swap variables in𝑶(𝟏)!

why does this fail?

how do wemake it work?

a new proof systemwith
one-instruction variable swaps!

we get refutations of PHP(𝒏)
with𝑶(𝒏𝟐) instructions! :)

we get refutations of PHP(𝒏)
with𝑶(𝒏𝟐) instructions, right?

1



Problem 1: swapping pigeons

The pigeonhole problem PHP(𝒏)
Can we fit 𝒏 pigeons into 𝒏 − 𝟏 holes?

w.l.o.g. pigeon 𝟏 is not in hole 𝒏 − 𝟏•
otherwise swap pigeons 𝟏 and 𝒏

⋮
w.l.o.g. pigeon 𝒏 − 𝟏 is not in hole 𝒏 − 𝟏•
pigeon 𝟏 is in some hole 𝟏,… , 𝒏 − 𝟐•
⋮
pigeon 𝒏 − 𝟏 is in some hole 𝟏,… , 𝒏 − 𝟐•
solve PHP(𝒏 − 𝟏)•

How long are propositional proofs?

resolution exponential lower bound
classical separation result

extended resolution 𝑶(𝒏𝟒)
new variables as definitions

DPR 𝑶(𝒏𝟑)
DPR conditionally assigns variables
w.l.o.g to⊤/⊥

𝑶(𝒏) iterations

𝑶(𝒏) pigeons/iteration
𝑶(𝒏) conditional w.l.o.g.s/pigeon

DSR conditionally assigns variables
w.l.o.g. to literals/⊤/⊥

we can swap variables in𝑶(𝟏)!

why does this fail?

how do wemake it work?

a new proof systemwith
one-instruction variable swaps!

we get refutations of PHP(𝒏)
with𝑶(𝒏𝟐) instructions! :)

we get refutations of PHP(𝒏)
with𝑶(𝒏𝟐) instructions, right?

1



Problem 1: swapping pigeons

The pigeonhole problem PHP(𝒏)
Can we fit 𝒏 pigeons into 𝒏 − 𝟏 holes?

w.l.o.g. pigeon 𝟏 is not in hole 𝒏 − 𝟏•
otherwise swap pigeons 𝟏 and 𝒏

⋮
w.l.o.g. pigeon 𝒏 − 𝟏 is not in hole 𝒏 − 𝟏•
pigeon 𝟏 is in some hole 𝟏,… , 𝒏 − 𝟐•
⋮
pigeon 𝒏 − 𝟏 is in some hole 𝟏,… , 𝒏 − 𝟐•
solve PHP(𝒏 − 𝟏)•

How long are propositional proofs?

resolution exponential lower bound
classical separation result

extended resolution 𝑶(𝒏𝟒)
new variables as definitions

DPR 𝑶(𝒏𝟑)
DPR conditionally assigns variables
w.l.o.g to⊤/⊥

𝑶(𝒏) iterations
𝑶(𝒏) pigeons/iteration

𝑶(𝒏) conditional w.l.o.g.s/pigeon

DSR conditionally assigns variables
w.l.o.g. to literals/⊤/⊥

we can swap variables in𝑶(𝟏)!

why does this fail?

how do wemake it work?

a new proof systemwith
one-instruction variable swaps!

we get refutations of PHP(𝒏)
with𝑶(𝒏𝟐) instructions! :)

we get refutations of PHP(𝒏)
with𝑶(𝒏𝟐) instructions, right?

1



Problem 1: swapping pigeons

The pigeonhole problem PHP(𝒏)
Can we fit 𝒏 pigeons into 𝒏 − 𝟏 holes?

w.l.o.g. pigeon 𝟏 is not in hole 𝒏 − 𝟏•
otherwise swap pigeons 𝟏 and 𝒏

⋮
w.l.o.g. pigeon 𝒏 − 𝟏 is not in hole 𝒏 − 𝟏•
pigeon 𝟏 is in some hole 𝟏,… , 𝒏 − 𝟐•
⋮
pigeon 𝒏 − 𝟏 is in some hole 𝟏,… , 𝒏 − 𝟐•
solve PHP(𝒏 − 𝟏)•

How long are propositional proofs?

resolution exponential lower bound
classical separation result

extended resolution 𝑶(𝒏𝟒)
new variables as definitions

DPR 𝑶(𝒏𝟑)
DPR conditionally assigns variables
w.l.o.g to⊤/⊥

𝑶(𝒏) iterations
𝑶(𝒏) pigeons/iteration

𝑶(𝒏) conditional w.l.o.g.s/pigeon

DSR conditionally assigns variables
w.l.o.g. to literals/⊤/⊥

we can swap variables in𝑶(𝟏)!

why does this fail?

how do wemake it work?

a new proof systemwith
one-instruction variable swaps!

we get refutations of PHP(𝒏)
with𝑶(𝒏𝟐) instructions! :)

we get refutations of PHP(𝒏)
with𝑶(𝒏𝟐) instructions, right?

1



Problem 1: swapping pigeons

The pigeonhole problem PHP(𝒏)
Can we fit 𝒏 pigeons into 𝒏 − 𝟏 holes?

w.l.o.g. pigeon 𝟏 is not in hole 𝒏 − 𝟏•
otherwise swap pigeons 𝟏 and 𝒏

⋮
w.l.o.g. pigeon 𝒏 − 𝟏 is not in hole 𝒏 − 𝟏•
pigeon 𝟏 is in some hole 𝟏,… , 𝒏 − 𝟐•
⋮
pigeon 𝒏 − 𝟏 is in some hole 𝟏,… , 𝒏 − 𝟐•
solve PHP(𝒏 − 𝟏)•

How long are propositional proofs?

resolution exponential lower bound
classical separation result

extended resolution 𝑶(𝒏𝟒)
new variables as definitions

DPR 𝑶(𝒏𝟑)
DPR conditionally assigns variables
w.l.o.g to⊤/⊥

𝑶(𝒏) iterations
𝑶(𝒏) pigeons/iteration

𝑶(𝒏) conditional w.l.o.g.s/pigeon

DSR conditionally assigns variables
w.l.o.g. to literals/⊤/⊥

we can swap variables in𝑶(𝟏)!

why does this fail?

how do wemake it work?

a new proof systemwith
one-instruction variable swaps!

we get refutations of PHP(𝒏)
with𝑶(𝒏𝟐) instructions! :)

we get refutations of PHP(𝒏)
with𝑶(𝒏𝟐) instructions, right?

1



Problem 1: swapping pigeons

The pigeonhole problem PHP(𝒏)
Can we fit 𝒏 pigeons into 𝒏 − 𝟏 holes?

w.l.o.g. pigeon 𝟏 is not in hole 𝒏 − 𝟏•
otherwise swap pigeons 𝟏 and 𝒏

⋮
w.l.o.g. pigeon 𝒏 − 𝟏 is not in hole 𝒏 − 𝟏•
pigeon 𝟏 is in some hole 𝟏,… , 𝒏 − 𝟐•
⋮
pigeon 𝒏 − 𝟏 is in some hole 𝟏,… , 𝒏 − 𝟐•
solve PHP(𝒏 − 𝟏)•

How long are propositional proofs?

resolution exponential lower bound
classical separation result

extended resolution 𝑶(𝒏𝟒)
new variables as definitions

DPR 𝑶(𝒏𝟑)
DPR conditionally assigns variables
w.l.o.g to⊤/⊥

𝑶(𝒏) iterations
𝑶(𝒏) pigeons/iteration

𝑶(𝒏) conditional w.l.o.g.s/pigeon

DSR conditionally assigns variables
w.l.o.g. to literals/⊤/⊥

we can swap variables in𝑶(𝟏)!

why does this fail?

how do wemake it work?

a new proof systemwith
one-instruction variable swaps!

we get refutations of PHP(𝒏)
with𝑶(𝒏𝟐) instructions! :)

we get refutations of PHP(𝒏)
with𝑶(𝒏𝟐) instructions, right?

1



Problem 1: swapping pigeons

The pigeonhole problem PHP(𝒏)
Can we fit 𝒏 pigeons into 𝒏 − 𝟏 holes?

w.l.o.g. pigeon 𝟏 is not in hole 𝒏 − 𝟏•
otherwise swap pigeons 𝟏 and 𝒏

⋮
w.l.o.g. pigeon 𝒏 − 𝟏 is not in hole 𝒏 − 𝟏•
pigeon 𝟏 is in some hole 𝟏,… , 𝒏 − 𝟐•
⋮
pigeon 𝒏 − 𝟏 is in some hole 𝟏,… , 𝒏 − 𝟐•
solve PHP(𝒏 − 𝟏)•

How long are propositional proofs?

resolution exponential lower bound
classical separation result

extended resolution 𝑶(𝒏𝟒)
new variables as definitions

DPR 𝑶(𝒏𝟑)
DPR conditionally assigns variables
w.l.o.g to⊤/⊥

𝑶(𝒏) iterations
𝑶(𝒏) pigeons/iteration

𝑶(𝒏) conditional w.l.o.g.s/pigeon

DSR conditionally assigns variables
w.l.o.g. to literals/⊤/⊥

we can swap variables in𝑶(𝟏)!

why does this fail?

how do wemake it work?

a new proof systemwith
one-instruction variable swaps!

we get refutations of PHP(𝒏)
with𝑶(𝒏𝟐) instructions! :)

we get refutations of PHP(𝒏)
with𝑶(𝒏𝟐) instructions, right?

1



Problem 1: swapping pigeons

The pigeonhole problem PHP(𝒏)
Can we fit 𝒏 pigeons into 𝒏 − 𝟏 holes?

w.l.o.g. pigeon 𝟏 is not in hole 𝒏 − 𝟏•
otherwise swap pigeons 𝟏 and 𝒏

⋮
w.l.o.g. pigeon 𝒏 − 𝟏 is not in hole 𝒏 − 𝟏•
pigeon 𝟏 is in some hole 𝟏,… , 𝒏 − 𝟐•
⋮
pigeon 𝒏 − 𝟏 is in some hole 𝟏,… , 𝒏 − 𝟐•
solve PHP(𝒏 − 𝟏)•

How long are propositional proofs?

resolution exponential lower bound
classical separation result

extended resolution 𝑶(𝒏𝟒)
new variables as definitions

DPR 𝑶(𝒏𝟑)
DPR conditionally assigns variables
w.l.o.g to⊤/⊥

𝑶(𝒏) iterations
𝑶(𝒏) pigeons/iteration

𝑶(𝒏) conditional w.l.o.g.s/pigeon

DSR conditionally assigns variables
w.l.o.g. to literals/⊤/⊥

we can swap variables in𝑶(𝟏)!

why does this fail?

how do wemake it work?

a new proof systemwith
one-instruction variable swaps!

we get refutations of PHP(𝒏)
with𝑶(𝒏𝟐) instructions! :)

we get refutations of PHP(𝒏)
with𝑶(𝒏𝟐) instructions, right?

1



Problem 2: interference-free lemmas

SAT
solver

learn𝑪
𝑭 ⊨ 𝑪 delete𝑪

derive as RUP
(a form of iterated resolution + subsumption)

log deletion

insert𝑪
𝑭 ≡sat 𝑭 ∧ 𝑪

insert proof fragment

Proof generation for inprocessing

if𝑪 is a RUP over 𝑭if𝑪 is implied by 𝑭if𝑪 is an SR clause over 𝑭 upon 𝝈if 𝑭| ̄𝑪 ⊨ 𝝈(𝑭)

i: 𝑪 [𝝈]
i: 𝑳𝟑

i: 𝑳𝟐

i: 𝑳𝟏

d: 𝑳𝟑
d: 𝑳𝟐
d: 𝑳𝟏

𝑪 is an SR clause if 𝝈(𝑪) is a tautology and
all clauses in 𝝈(𝑭) are RUP clauses over 𝑭| ̄𝑪

all clauses in 𝝈(𝑭)
are RUP clauses

over 𝑭 ∧ 𝑳𝟏 ∧ 𝑳𝟐 ∧ 𝑳𝟑

we also need 𝝈(𝑳𝟏), 𝝈(𝑳𝟐), 𝝈(𝑳𝟑) to be RUPs over 𝑭 ∧ 𝑳𝟏 ∧ 𝑳𝟐 ∧ 𝑳𝟑
... whichmight need extra lemmas themselves...

... and so on...
how can we temporarily introduce interference-free lemmas?

the clauses in 𝝈(𝑭) need to be RUPs,
not just be implied

we can just add lemmas
until they are RUPs! :)

we can just add lemmas
until they are RUPs, right?

2



Problem 2: interference-free lemmas

SAT
solver

learn𝑪
𝑭 ⊨ 𝑪 delete𝑪

derive as RUP

(a form of iterated resolution + subsumption)
log deletion

insert𝑪
𝑭 ≡sat 𝑭 ∧ 𝑪

insert proof fragment

Proof generation for inprocessing

if𝑪 is a RUP over 𝑭if𝑪 is implied by 𝑭if𝑪 is an SR clause over 𝑭 upon 𝝈if 𝑭| ̄𝑪 ⊨ 𝝈(𝑭)

i: 𝑪 [𝝈]
i: 𝑳𝟑

i: 𝑳𝟐

i: 𝑳𝟏

d: 𝑳𝟑
d: 𝑳𝟐
d: 𝑳𝟏

𝑪 is an SR clause if 𝝈(𝑪) is a tautology and
all clauses in 𝝈(𝑭) are RUP clauses over 𝑭| ̄𝑪

all clauses in 𝝈(𝑭)
are RUP clauses

over 𝑭 ∧ 𝑳𝟏 ∧ 𝑳𝟐 ∧ 𝑳𝟑

we also need 𝝈(𝑳𝟏), 𝝈(𝑳𝟐), 𝝈(𝑳𝟑) to be RUPs over 𝑭 ∧ 𝑳𝟏 ∧ 𝑳𝟐 ∧ 𝑳𝟑
... whichmight need extra lemmas themselves...

... and so on...
how can we temporarily introduce interference-free lemmas?

the clauses in 𝝈(𝑭) need to be RUPs,
not just be implied

we can just add lemmas
until they are RUPs! :)

we can just add lemmas
until they are RUPs, right?

2



Problem 2: interference-free lemmas

SAT
solver

learn𝑪
𝑭 ⊨ 𝑪 delete𝑪

derive as RUP
(a form of iterated resolution + subsumption)

log deletion

insert𝑪
𝑭 ≡sat 𝑭 ∧ 𝑪

insert proof fragment

Proof generation for inprocessing

if𝑪 is a RUP over 𝑭if𝑪 is implied by 𝑭if𝑪 is an SR clause over 𝑭 upon 𝝈if 𝑭| ̄𝑪 ⊨ 𝝈(𝑭)

i: 𝑪 [𝝈]
i: 𝑳𝟑

i: 𝑳𝟐

i: 𝑳𝟏

d: 𝑳𝟑
d: 𝑳𝟐
d: 𝑳𝟏

𝑪 is an SR clause if 𝝈(𝑪) is a tautology and
all clauses in 𝝈(𝑭) are RUP clauses over 𝑭| ̄𝑪

all clauses in 𝝈(𝑭)
are RUP clauses

over 𝑭 ∧ 𝑳𝟏 ∧ 𝑳𝟐 ∧ 𝑳𝟑

we also need 𝝈(𝑳𝟏), 𝝈(𝑳𝟐), 𝝈(𝑳𝟑) to be RUPs over 𝑭 ∧ 𝑳𝟏 ∧ 𝑳𝟐 ∧ 𝑳𝟑
... whichmight need extra lemmas themselves...

... and so on...
how can we temporarily introduce interference-free lemmas?

the clauses in 𝝈(𝑭) need to be RUPs,
not just be implied

we can just add lemmas
until they are RUPs! :)

we can just add lemmas
until they are RUPs, right?

2



Problem 2: interference-free lemmas

SAT
solver

learn𝑪
𝑭 ⊨ 𝑪 delete𝑪

derive as RUP
(a form of iterated resolution + subsumption)

log deletion

insert𝑪
𝑭 ≡sat 𝑭 ∧ 𝑪

insert proof fragment

Proof generation for inprocessing

if𝑪 is a RUP over 𝑭if𝑪 is implied by 𝑭if𝑪 is an SR clause over 𝑭 upon 𝝈if 𝑭| ̄𝑪 ⊨ 𝝈(𝑭)

i: 𝑪 [𝝈]
i: 𝑳𝟑

i: 𝑳𝟐

i: 𝑳𝟏

d: 𝑳𝟑
d: 𝑳𝟐
d: 𝑳𝟏

𝑪 is an SR clause if 𝝈(𝑪) is a tautology and
all clauses in 𝝈(𝑭) are RUP clauses over 𝑭| ̄𝑪

all clauses in 𝝈(𝑭)
are RUP clauses

over 𝑭 ∧ 𝑳𝟏 ∧ 𝑳𝟐 ∧ 𝑳𝟑

we also need 𝝈(𝑳𝟏), 𝝈(𝑳𝟐), 𝝈(𝑳𝟑) to be RUPs over 𝑭 ∧ 𝑳𝟏 ∧ 𝑳𝟐 ∧ 𝑳𝟑
... whichmight need extra lemmas themselves...

... and so on...
how can we temporarily introduce interference-free lemmas?

the clauses in 𝝈(𝑭) need to be RUPs,
not just be implied

we can just add lemmas
until they are RUPs! :)

we can just add lemmas
until they are RUPs, right?

2



Problem 2: interference-free lemmas

SAT
solver

learn𝑪
𝑭 ⊨ 𝑪 delete𝑪

derive as RUP
(a form of iterated resolution + subsumption)

log deletion

insert𝑪
𝑭 ≡sat 𝑭 ∧ 𝑪

insert proof fragment

Proof generation for inprocessing

if𝑪 is a RUP over 𝑭if𝑪 is implied by 𝑭if𝑪 is an SR clause over 𝑭 upon 𝝈if 𝑭| ̄𝑪 ⊨ 𝝈(𝑭)

i: 𝑪 [𝝈]
i: 𝑳𝟑

i: 𝑳𝟐

i: 𝑳𝟏

d: 𝑳𝟑
d: 𝑳𝟐
d: 𝑳𝟏

𝑪 is an SR clause if 𝝈(𝑪) is a tautology and
all clauses in 𝝈(𝑭) are RUP clauses over 𝑭| ̄𝑪

all clauses in 𝝈(𝑭)
are RUP clauses

over 𝑭 ∧ 𝑳𝟏 ∧ 𝑳𝟐 ∧ 𝑳𝟑

we also need 𝝈(𝑳𝟏), 𝝈(𝑳𝟐), 𝝈(𝑳𝟑) to be RUPs over 𝑭 ∧ 𝑳𝟏 ∧ 𝑳𝟐 ∧ 𝑳𝟑
... whichmight need extra lemmas themselves...

... and so on...
how can we temporarily introduce interference-free lemmas?

the clauses in 𝝈(𝑭) need to be RUPs,
not just be implied

we can just add lemmas
until they are RUPs! :)

we can just add lemmas
until they are RUPs, right?

2



Problem 2: interference-free lemmas

SAT
solver

learn𝑪
𝑭 ⊨ 𝑪 delete𝑪

derive as RUP
(a form of iterated resolution + subsumption)

log deletion

insert𝑪
𝑭 ≡sat 𝑭 ∧ 𝑪

insert proof fragment

Proof generation for inprocessing

if𝑪 is a RUP over 𝑭if𝑪 is implied by 𝑭if𝑪 is an SR clause over 𝑭 upon 𝝈if 𝑭| ̄𝑪 ⊨ 𝝈(𝑭)

i: 𝑪 [𝝈]
i: 𝑳𝟑

i: 𝑳𝟐

i: 𝑳𝟏

d: 𝑳𝟑
d: 𝑳𝟐
d: 𝑳𝟏

𝑪 is an SR clause if 𝝈(𝑪) is a tautology and
all clauses in 𝝈(𝑭) are RUP clauses over 𝑭| ̄𝑪

all clauses in 𝝈(𝑭)
are RUP clauses

over 𝑭 ∧ 𝑳𝟏 ∧ 𝑳𝟐 ∧ 𝑳𝟑

we also need 𝝈(𝑳𝟏), 𝝈(𝑳𝟐), 𝝈(𝑳𝟑) to be RUPs over 𝑭 ∧ 𝑳𝟏 ∧ 𝑳𝟐 ∧ 𝑳𝟑
... whichmight need extra lemmas themselves...

... and so on...
how can we temporarily introduce interference-free lemmas?

the clauses in 𝝈(𝑭) need to be RUPs,
not just be implied

we can just add lemmas
until they are RUPs! :)

we can just add lemmas
until they are RUPs, right?

2



Problem 2: interference-free lemmas

SAT
solver

learn𝑪
𝑭 ⊨ 𝑪 delete𝑪

derive as RUP
(a form of iterated resolution + subsumption)

log deletion

insert𝑪
𝑭 ≡sat 𝑭 ∧ 𝑪

insert proof fragment

Proof generation for inprocessing

if𝑪 is a RUP over 𝑭if𝑪 is implied by 𝑭if𝑪 is an SR clause over 𝑭 upon 𝝈if 𝑭| ̄𝑪 ⊨ 𝝈(𝑭)

i: 𝑪 [𝝈]
i: 𝑳𝟑

i: 𝑳𝟐

i: 𝑳𝟏

d: 𝑳𝟑
d: 𝑳𝟐
d: 𝑳𝟏

𝑪 is an SR clause if 𝝈(𝑪) is a tautology and
all clauses in 𝝈(𝑭) are RUP clauses over 𝑭| ̄𝑪

all clauses in 𝝈(𝑭)
are RUP clauses

over 𝑭 ∧ 𝑳𝟏 ∧ 𝑳𝟐 ∧ 𝑳𝟑

we also need 𝝈(𝑳𝟏), 𝝈(𝑳𝟐), 𝝈(𝑳𝟑) to be RUPs over 𝑭 ∧ 𝑳𝟏 ∧ 𝑳𝟐 ∧ 𝑳𝟑
... whichmight need extra lemmas themselves...

... and so on...
how can we temporarily introduce interference-free lemmas?

the clauses in 𝝈(𝑭) need to be RUPs,
not just be implied

we can just add lemmas
until they are RUPs! :)

we can just add lemmas
until they are RUPs, right?

2



Problem 2: interference-free lemmas

SAT
solver

learn𝑪
𝑭 ⊨ 𝑪 delete𝑪

derive as RUP
(a form of iterated resolution + subsumption)

log deletion

insert𝑪
𝑭 ≡sat 𝑭 ∧ 𝑪

insert proof fragment

Proof generation for inprocessing

if𝑪 is a RUP over 𝑭

if𝑪 is implied by 𝑭if𝑪 is an SR clause over 𝑭 upon 𝝈if 𝑭| ̄𝑪 ⊨ 𝝈(𝑭)

i: 𝑪 [𝝈]
i: 𝑳𝟑

i: 𝑳𝟐

i: 𝑳𝟏

d: 𝑳𝟑
d: 𝑳𝟐
d: 𝑳𝟏

𝑪 is an SR clause if 𝝈(𝑪) is a tautology and
all clauses in 𝝈(𝑭) are RUP clauses over 𝑭| ̄𝑪

all clauses in 𝝈(𝑭)
are RUP clauses

over 𝑭 ∧ 𝑳𝟏 ∧ 𝑳𝟐 ∧ 𝑳𝟑

we also need 𝝈(𝑳𝟏), 𝝈(𝑳𝟐), 𝝈(𝑳𝟑) to be RUPs over 𝑭 ∧ 𝑳𝟏 ∧ 𝑳𝟐 ∧ 𝑳𝟑
... whichmight need extra lemmas themselves...

... and so on...
how can we temporarily introduce interference-free lemmas?

the clauses in 𝝈(𝑭) need to be RUPs,
not just be implied

we can just add lemmas
until they are RUPs! :)

we can just add lemmas
until they are RUPs, right?

2



Problem 2: interference-free lemmas

SAT
solver

learn𝑪
𝑭 ⊨ 𝑪 delete𝑪

derive as RUP
(a form of iterated resolution + subsumption)

log deletion

insert𝑪
𝑭 ≡sat 𝑭 ∧ 𝑪

insert proof fragment

Proof generation for inprocessing

if𝑪 is a RUP over 𝑭

if𝑪 is implied by 𝑭if𝑪 is an SR clause over 𝑭 upon 𝝈if 𝑭| ̄𝑪 ⊨ 𝝈(𝑭)

i: 𝑪

[𝝈]
i: 𝑳𝟑

i: 𝑳𝟐

i: 𝑳𝟏

d: 𝑳𝟑
d: 𝑳𝟐
d: 𝑳𝟏

𝑪 is an SR clause if 𝝈(𝑪) is a tautology and
all clauses in 𝝈(𝑭) are RUP clauses over 𝑭| ̄𝑪

all clauses in 𝝈(𝑭)
are RUP clauses

over 𝑭 ∧ 𝑳𝟏 ∧ 𝑳𝟐 ∧ 𝑳𝟑

we also need 𝝈(𝑳𝟏), 𝝈(𝑳𝟐), 𝝈(𝑳𝟑) to be RUPs over 𝑭 ∧ 𝑳𝟏 ∧ 𝑳𝟐 ∧ 𝑳𝟑
... whichmight need extra lemmas themselves...

... and so on...
how can we temporarily introduce interference-free lemmas?

the clauses in 𝝈(𝑭) need to be RUPs,
not just be implied

we can just add lemmas
until they are RUPs! :)

we can just add lemmas
until they are RUPs, right?

2



Problem 2: interference-free lemmas

SAT
solver

learn𝑪
𝑭 ⊨ 𝑪 delete𝑪

derive as RUP
(a form of iterated resolution + subsumption)

log deletion

insert𝑪
𝑭 ≡sat 𝑭 ∧ 𝑪

insert proof fragment

Proof generation for inprocessing

if𝑪 is a RUP over 𝑭if𝑪 is implied by 𝑭if𝑪 is an SR clause over 𝑭 upon 𝝈if 𝑭| ̄𝑪 ⊨ 𝝈(𝑭)

i: 𝑪

[𝝈]
i: 𝑳𝟑

i: 𝑳𝟐

i: 𝑳𝟏

d: 𝑳𝟑
d: 𝑳𝟐
d: 𝑳𝟏

𝑪 is an SR clause if 𝝈(𝑪) is a tautology and
all clauses in 𝝈(𝑭) are RUP clauses over 𝑭| ̄𝑪

all clauses in 𝝈(𝑭)
are RUP clauses

over 𝑭 ∧ 𝑳𝟏 ∧ 𝑳𝟐 ∧ 𝑳𝟑

we also need 𝝈(𝑳𝟏), 𝝈(𝑳𝟐), 𝝈(𝑳𝟑) to be RUPs over 𝑭 ∧ 𝑳𝟏 ∧ 𝑳𝟐 ∧ 𝑳𝟑
... whichmight need extra lemmas themselves...

... and so on...
how can we temporarily introduce interference-free lemmas?

the clauses in 𝝈(𝑭) need to be RUPs,
not just be implied

we can just add lemmas
until they are RUPs! :)

we can just add lemmas
until they are RUPs, right?

2



Problem 2: interference-free lemmas

SAT
solver

learn𝑪
𝑭 ⊨ 𝑪 delete𝑪

derive as RUP
(a form of iterated resolution + subsumption)

log deletion

insert𝑪
𝑭 ≡sat 𝑭 ∧ 𝑪

insert proof fragment

Proof generation for inprocessing

if𝑪 is a RUP over 𝑭

if𝑪 is implied by 𝑭

if𝑪 is an SR clause over 𝑭 upon 𝝈if 𝑭| ̄𝑪 ⊨ 𝝈(𝑭)

i: 𝑪

[𝝈]
i: 𝑳𝟑

i: 𝑳𝟐

i: 𝑳𝟏

d: 𝑳𝟑
d: 𝑳𝟐
d: 𝑳𝟏

𝑪 is an SR clause if 𝝈(𝑪) is a tautology and
all clauses in 𝝈(𝑭) are RUP clauses over 𝑭| ̄𝑪

all clauses in 𝝈(𝑭)
are RUP clauses

over 𝑭 ∧ 𝑳𝟏 ∧ 𝑳𝟐 ∧ 𝑳𝟑

we also need 𝝈(𝑳𝟏), 𝝈(𝑳𝟐), 𝝈(𝑳𝟑) to be RUPs over 𝑭 ∧ 𝑳𝟏 ∧ 𝑳𝟐 ∧ 𝑳𝟑
... whichmight need extra lemmas themselves...

... and so on...
how can we temporarily introduce interference-free lemmas?

the clauses in 𝝈(𝑭) need to be RUPs,
not just be implied

we can just add lemmas
until they are RUPs! :)

we can just add lemmas
until they are RUPs, right?

2



Problem 2: interference-free lemmas

SAT
solver

learn𝑪
𝑭 ⊨ 𝑪 delete𝑪

derive as RUP
(a form of iterated resolution + subsumption)

log deletion

insert𝑪
𝑭 ≡sat 𝑭 ∧ 𝑪

insert proof fragment

Proof generation for inprocessing

if𝑪 is a RUP over 𝑭

if𝑪 is implied by 𝑭

if𝑪 is an SR clause over 𝑭 upon 𝝈if 𝑭| ̄𝑪 ⊨ 𝝈(𝑭)

i: 𝑪

[𝝈]

i: 𝑳𝟑

i: 𝑳𝟐

i: 𝑳𝟏

d: 𝑳𝟑
d: 𝑳𝟐
d: 𝑳𝟏

𝑪 is an SR clause if 𝝈(𝑪) is a tautology and
all clauses in 𝝈(𝑭) are RUP clauses over 𝑭| ̄𝑪

all clauses in 𝝈(𝑭)
are RUP clauses

over 𝑭 ∧ 𝑳𝟏 ∧ 𝑳𝟐 ∧ 𝑳𝟑

we also need 𝝈(𝑳𝟏), 𝝈(𝑳𝟐), 𝝈(𝑳𝟑) to be RUPs over 𝑭 ∧ 𝑳𝟏 ∧ 𝑳𝟐 ∧ 𝑳𝟑
... whichmight need extra lemmas themselves...

... and so on...
how can we temporarily introduce interference-free lemmas?

the clauses in 𝝈(𝑭) need to be RUPs,
not just be implied

we can just add lemmas
until they are RUPs! :)

we can just add lemmas
until they are RUPs, right?

2



Problem 2: interference-free lemmas

SAT
solver

learn𝑪
𝑭 ⊨ 𝑪 delete𝑪

derive as RUP
(a form of iterated resolution + subsumption)

log deletion

insert𝑪
𝑭 ≡sat 𝑭 ∧ 𝑪

insert proof fragment

Proof generation for inprocessing

if𝑪 is a RUP over 𝑭if𝑪 is implied by 𝑭if𝑪 is an SR clause over 𝑭 upon 𝝈if 𝑭| ̄𝑪 ⊨ 𝝈(𝑭)

i: 𝑪

[𝝈]
i: 𝑳𝟑

i: 𝑳𝟐

i: 𝑳𝟏

d: 𝑳𝟑
d: 𝑳𝟐
d: 𝑳𝟏

𝑪 is an SR clause if 𝝈(𝑪) is a tautology and
all clauses in 𝝈(𝑭) are RUP clauses over 𝑭| ̄𝑪

all clauses in 𝝈(𝑭)
are RUP clauses

over 𝑭 ∧ 𝑳𝟏 ∧ 𝑳𝟐 ∧ 𝑳𝟑

we also need 𝝈(𝑳𝟏), 𝝈(𝑳𝟐), 𝝈(𝑳𝟑) to be RUPs over 𝑭 ∧ 𝑳𝟏 ∧ 𝑳𝟐 ∧ 𝑳𝟑
... whichmight need extra lemmas themselves...

... and so on...
how can we temporarily introduce interference-free lemmas?

the clauses in 𝝈(𝑭) need to be RUPs,
not just be implied

we can just add lemmas
until they are RUPs! :)

we can just add lemmas
until they are RUPs, right?

2



Problem 2: interference-free lemmas

SAT
solver

learn𝑪
𝑭 ⊨ 𝑪 delete𝑪

derive as RUP
(a form of iterated resolution + subsumption)

log deletion

insert𝑪
𝑭 ≡sat 𝑭 ∧ 𝑪

insert proof fragment

Proof generation for inprocessing

if𝑪 is a RUP over 𝑭if𝑪 is implied by 𝑭

if𝑪 is an SR clause over 𝑭 upon 𝝈

if 𝑭| ̄𝑪 ⊨ 𝝈(𝑭)

i: 𝑪

[𝝈]
i: 𝑳𝟑

i: 𝑳𝟐

i: 𝑳𝟏

d: 𝑳𝟑
d: 𝑳𝟐
d: 𝑳𝟏

𝑪 is an SR clause if 𝝈(𝑪) is a tautology and
all clauses in 𝝈(𝑭) are RUP clauses over 𝑭| ̄𝑪

all clauses in 𝝈(𝑭)
are RUP clauses

over 𝑭 ∧ 𝑳𝟏 ∧ 𝑳𝟐 ∧ 𝑳𝟑

we also need 𝝈(𝑳𝟏), 𝝈(𝑳𝟐), 𝝈(𝑳𝟑) to be RUPs over 𝑭 ∧ 𝑳𝟏 ∧ 𝑳𝟐 ∧ 𝑳𝟑
... whichmight need extra lemmas themselves...

... and so on...
how can we temporarily introduce interference-free lemmas?

the clauses in 𝝈(𝑭) need to be RUPs,
not just be implied

we can just add lemmas
until they are RUPs! :)

we can just add lemmas
until they are RUPs, right?

2



Problem 2: interference-free lemmas

SAT
solver

learn𝑪
𝑭 ⊨ 𝑪 delete𝑪

derive as RUP
(a form of iterated resolution + subsumption)

log deletion

insert𝑪
𝑭 ≡sat 𝑭 ∧ 𝑪

insert proof fragment

Proof generation for inprocessing

if𝑪 is a RUP over 𝑭if𝑪 is implied by 𝑭

if𝑪 is an SR clause over 𝑭 upon 𝝈

if 𝑭| ̄𝑪 ⊨ 𝝈(𝑭)

i: 𝑪 [𝝈]

i: 𝑳𝟑

i: 𝑳𝟐

i: 𝑳𝟏

d: 𝑳𝟑
d: 𝑳𝟐
d: 𝑳𝟏

𝑪 is an SR clause if 𝝈(𝑪) is a tautology and
all clauses in 𝝈(𝑭) are RUP clauses over 𝑭| ̄𝑪

all clauses in 𝝈(𝑭)
are RUP clauses

over 𝑭 ∧ 𝑳𝟏 ∧ 𝑳𝟐 ∧ 𝑳𝟑

we also need 𝝈(𝑳𝟏), 𝝈(𝑳𝟐), 𝝈(𝑳𝟑) to be RUPs over 𝑭 ∧ 𝑳𝟏 ∧ 𝑳𝟐 ∧ 𝑳𝟑
... whichmight need extra lemmas themselves...

... and so on...
how can we temporarily introduce interference-free lemmas?

the clauses in 𝝈(𝑭) need to be RUPs,
not just be implied

we can just add lemmas
until they are RUPs! :)

we can just add lemmas
until they are RUPs, right?

2



Problem 2: interference-free lemmas

SAT
solver

learn𝑪
𝑭 ⊨ 𝑪 delete𝑪

derive as RUP
(a form of iterated resolution + subsumption)

log deletion

insert𝑪
𝑭 ≡sat 𝑭 ∧ 𝑪

insert proof fragment

Proof generation for inprocessing

if𝑪 is a RUP over 𝑭if𝑪 is implied by 𝑭if𝑪 is an SR clause over 𝑭 upon 𝝈if 𝑭| ̄𝑪 ⊨ 𝝈(𝑭)

i: 𝑪 [𝝈]

i: 𝑳𝟑

i: 𝑳𝟐

i: 𝑳𝟏

d: 𝑳𝟑
d: 𝑳𝟐
d: 𝑳𝟏

𝑪 is an SR clause if 𝝈(𝑪) is a tautology and
all clauses in 𝝈(𝑭) are RUP clauses over 𝑭| ̄𝑪

all clauses in 𝝈(𝑭)
are RUP clauses

over 𝑭 ∧ 𝑳𝟏 ∧ 𝑳𝟐 ∧ 𝑳𝟑

we also need 𝝈(𝑳𝟏), 𝝈(𝑳𝟐), 𝝈(𝑳𝟑) to be RUPs over 𝑭 ∧ 𝑳𝟏 ∧ 𝑳𝟐 ∧ 𝑳𝟑
... whichmight need extra lemmas themselves...

... and so on...
how can we temporarily introduce interference-free lemmas?

the clauses in 𝝈(𝑭) need to be RUPs,
not just be implied

we can just add lemmas
until they are RUPs! :)

we can just add lemmas
until they are RUPs, right?

2



Problem 2: interference-free lemmas

SAT
solver

learn𝑪
𝑭 ⊨ 𝑪 delete𝑪

derive as RUP
(a form of iterated resolution + subsumption)

log deletion

insert𝑪
𝑭 ≡sat 𝑭 ∧ 𝑪

insert proof fragment

Proof generation for inprocessing

if𝑪 is a RUP over 𝑭if𝑪 is implied by 𝑭if𝑪 is an SR clause over 𝑭 upon 𝝈

if 𝑭| ̄𝑪 ⊨ 𝝈(𝑭)

i: 𝑪 [𝝈]

i: 𝑳𝟑

i: 𝑳𝟐

i: 𝑳𝟏

d: 𝑳𝟑
d: 𝑳𝟐
d: 𝑳𝟏

𝑪 is an SR clause if 𝝈(𝑪) is a tautology and
all clauses in 𝝈(𝑭) are RUP clauses over 𝑭| ̄𝑪

all clauses in 𝝈(𝑭)
are RUP clauses

over 𝑭 ∧ 𝑳𝟏 ∧ 𝑳𝟐 ∧ 𝑳𝟑

we also need 𝝈(𝑳𝟏), 𝝈(𝑳𝟐), 𝝈(𝑳𝟑) to be RUPs over 𝑭 ∧ 𝑳𝟏 ∧ 𝑳𝟐 ∧ 𝑳𝟑
... whichmight need extra lemmas themselves...

... and so on...
how can we temporarily introduce interference-free lemmas?

the clauses in 𝝈(𝑭) need to be RUPs,
not just be implied

we can just add lemmas
until they are RUPs! :)

we can just add lemmas
until they are RUPs, right?

2



Problem 2: interference-free lemmas

SAT
solver

learn𝑪
𝑭 ⊨ 𝑪 delete𝑪

derive as RUP
(a form of iterated resolution + subsumption)

log deletion

insert𝑪
𝑭 ≡sat 𝑭 ∧ 𝑪

insert proof fragment

Proof generation for inprocessing

if𝑪 is a RUP over 𝑭if𝑪 is implied by 𝑭if𝑪 is an SR clause over 𝑭 upon 𝝈

if 𝑭| ̄𝑪 ⊨ 𝝈(𝑭)

i: 𝑪 [𝝈]
i: 𝑳𝟑

i: 𝑳𝟐

i: 𝑳𝟏

d: 𝑳𝟑
d: 𝑳𝟐
d: 𝑳𝟏

𝑪 is an SR clause if 𝝈(𝑪) is a tautology and
all clauses in 𝝈(𝑭) are RUP clauses over 𝑭| ̄𝑪

all clauses in 𝝈(𝑭)
are RUP clauses

over 𝑭 ∧ 𝑳𝟏 ∧ 𝑳𝟐 ∧ 𝑳𝟑

we also need 𝝈(𝑳𝟏), 𝝈(𝑳𝟐), 𝝈(𝑳𝟑) to be RUPs over 𝑭 ∧ 𝑳𝟏 ∧ 𝑳𝟐 ∧ 𝑳𝟑
... whichmight need extra lemmas themselves...

... and so on...
how can we temporarily introduce interference-free lemmas?

the clauses in 𝝈(𝑭) need to be RUPs,
not just be implied

we can just add lemmas
until they are RUPs! :)

we can just add lemmas
until they are RUPs, right?

2



Problem 2: interference-free lemmas

SAT
solver

learn𝑪
𝑭 ⊨ 𝑪 delete𝑪

derive as RUP
(a form of iterated resolution + subsumption)

log deletion

insert𝑪
𝑭 ≡sat 𝑭 ∧ 𝑪

insert proof fragment

Proof generation for inprocessing

if𝑪 is a RUP over 𝑭if𝑪 is implied by 𝑭if𝑪 is an SR clause over 𝑭 upon 𝝈

if 𝑭| ̄𝑪 ⊨ 𝝈(𝑭)

i: 𝑪 [𝝈]
i: 𝑳𝟑

i: 𝑳𝟐

i: 𝑳𝟏

d: 𝑳𝟑
d: 𝑳𝟐
d: 𝑳𝟏

𝑪 is an SR clause if 𝝈(𝑪) is a tautology and
all clauses in 𝝈(𝑭) are RUP clauses over 𝑭| ̄𝑪

all clauses in 𝝈(𝑭)
are RUP clauses

over 𝑭 ∧ 𝑳𝟏 ∧ 𝑳𝟐 ∧ 𝑳𝟑

we also need 𝝈(𝑳𝟏), 𝝈(𝑳𝟐), 𝝈(𝑳𝟑) to be RUPs over 𝑭 ∧ 𝑳𝟏 ∧ 𝑳𝟐 ∧ 𝑳𝟑
... whichmight need extra lemmas themselves...

... and so on...
how can we temporarily introduce interference-free lemmas?

the clauses in 𝝈(𝑭) need to be RUPs,
not just be implied

we can just add lemmas
until they are RUPs! :)

we can just add lemmas
until they are RUPs, right?

2



Problem 2: interference-free lemmas

SAT
solver

learn𝑪
𝑭 ⊨ 𝑪 delete𝑪

derive as RUP
(a form of iterated resolution + subsumption)

log deletion

insert𝑪
𝑭 ≡sat 𝑭 ∧ 𝑪

insert proof fragment

Proof generation for inprocessing

if𝑪 is a RUP over 𝑭if𝑪 is implied by 𝑭if𝑪 is an SR clause over 𝑭 upon 𝝈

if 𝑭| ̄𝑪 ⊨ 𝝈(𝑭)

i: 𝑪 [𝝈]
i: 𝑳𝟑

i: 𝑳𝟐

i: 𝑳𝟏

d: 𝑳𝟑
d: 𝑳𝟐
d: 𝑳𝟏

𝑪 is an SR clause if 𝝈(𝑪) is a tautology and
all clauses in 𝝈(𝑭) are RUP clauses over 𝑭| ̄𝑪

all clauses in 𝝈(𝑭)
are RUP clauses

over 𝑭 ∧ 𝑳𝟏 ∧ 𝑳𝟐 ∧ 𝑳𝟑

we also need 𝝈(𝑳𝟏), 𝝈(𝑳𝟐), 𝝈(𝑳𝟑) to be RUPs over 𝑭 ∧ 𝑳𝟏 ∧ 𝑳𝟐 ∧ 𝑳𝟑

... whichmight need extra lemmas themselves...
... and so on...

how can we temporarily introduce interference-free lemmas?

the clauses in 𝝈(𝑭) need to be RUPs,
not just be implied

we can just add lemmas
until they are RUPs! :)

we can just add lemmas
until they are RUPs, right?

2



Problem 2: interference-free lemmas

SAT
solver

learn𝑪
𝑭 ⊨ 𝑪 delete𝑪

derive as RUP
(a form of iterated resolution + subsumption)

log deletion

insert𝑪
𝑭 ≡sat 𝑭 ∧ 𝑪

insert proof fragment

Proof generation for inprocessing

if𝑪 is a RUP over 𝑭if𝑪 is implied by 𝑭if𝑪 is an SR clause over 𝑭 upon 𝝈

if 𝑭| ̄𝑪 ⊨ 𝝈(𝑭)

i: 𝑪 [𝝈]
i: 𝑳𝟑

i: 𝑳𝟐

i: 𝑳𝟏

d: 𝑳𝟑
d: 𝑳𝟐
d: 𝑳𝟏

𝑪 is an SR clause if 𝝈(𝑪) is a tautology and
all clauses in 𝝈(𝑭) are RUP clauses over 𝑭| ̄𝑪

all clauses in 𝝈(𝑭)
are RUP clauses

over 𝑭 ∧ 𝑳𝟏 ∧ 𝑳𝟐 ∧ 𝑳𝟑

we also need 𝝈(𝑳𝟏), 𝝈(𝑳𝟐), 𝝈(𝑳𝟑) to be RUPs over 𝑭 ∧ 𝑳𝟏 ∧ 𝑳𝟐 ∧ 𝑳𝟑
... whichmight need extra lemmas themselves...

... and so on...
how can we temporarily introduce interference-free lemmas?

the clauses in 𝝈(𝑭) need to be RUPs,
not just be implied

we can just add lemmas
until they are RUPs! :)

we can just add lemmas
until they are RUPs, right?

2



Problem 2: interference-free lemmas

SAT
solver

learn𝑪
𝑭 ⊨ 𝑪 delete𝑪

derive as RUP
(a form of iterated resolution + subsumption)

log deletion

insert𝑪
𝑭 ≡sat 𝑭 ∧ 𝑪

insert proof fragment

Proof generation for inprocessing

if𝑪 is a RUP over 𝑭if𝑪 is implied by 𝑭if𝑪 is an SR clause over 𝑭 upon 𝝈

if 𝑭| ̄𝑪 ⊨ 𝝈(𝑭)

i: 𝑪 [𝝈]
i: 𝑳𝟑

i: 𝑳𝟐

i: 𝑳𝟏

d: 𝑳𝟑
d: 𝑳𝟐
d: 𝑳𝟏

𝑪 is an SR clause if 𝝈(𝑪) is a tautology and
all clauses in 𝝈(𝑭) are RUP clauses over 𝑭| ̄𝑪

all clauses in 𝝈(𝑭)
are RUP clauses

over 𝑭 ∧ 𝑳𝟏 ∧ 𝑳𝟐 ∧ 𝑳𝟑

we also need 𝝈(𝑳𝟏), 𝝈(𝑳𝟐), 𝝈(𝑳𝟑) to be RUPs over 𝑭 ∧ 𝑳𝟏 ∧ 𝑳𝟐 ∧ 𝑳𝟑
... whichmight need extra lemmas themselves...

... and so on...

how can we temporarily introduce interference-free lemmas?

the clauses in 𝝈(𝑭) need to be RUPs,
not just be implied

we can just add lemmas
until they are RUPs! :)

we can just add lemmas
until they are RUPs, right?

2



Problem 2: interference-free lemmas

SAT
solver

learn𝑪
𝑭 ⊨ 𝑪 delete𝑪

derive as RUP
(a form of iterated resolution + subsumption)

log deletion

insert𝑪
𝑭 ≡sat 𝑭 ∧ 𝑪

insert proof fragment

Proof generation for inprocessing

if𝑪 is a RUP over 𝑭if𝑪 is implied by 𝑭if𝑪 is an SR clause over 𝑭 upon 𝝈

if 𝑭| ̄𝑪 ⊨ 𝝈(𝑭)

i: 𝑪 [𝝈]
i: 𝑳𝟑

i: 𝑳𝟐

i: 𝑳𝟏

d: 𝑳𝟑
d: 𝑳𝟐
d: 𝑳𝟏

𝑪 is an SR clause if 𝝈(𝑪) is a tautology and
all clauses in 𝝈(𝑭) are RUP clauses over 𝑭| ̄𝑪

all clauses in 𝝈(𝑭)
are RUP clauses

over 𝑭 ∧ 𝑳𝟏 ∧ 𝑳𝟐 ∧ 𝑳𝟑

we also need 𝝈(𝑳𝟏), 𝝈(𝑳𝟐), 𝝈(𝑳𝟑) to be RUPs over 𝑭 ∧ 𝑳𝟏 ∧ 𝑳𝟐 ∧ 𝑳𝟑
... whichmight need extra lemmas themselves...

... and so on...
how can we temporarily introduce interference-free lemmas?

the clauses in 𝝈(𝑭) need to be RUPs,
not just be implied

we can just add lemmas
until they are RUPs! :)

we can just add lemmas
until they are RUPs, right?

2



Problem 3: cores and trimming under interference

Generating an unsatisfiable core from a proof

mark the empty clause and proceed backwards
if𝑪 is not marked, skip it•
if𝑪 is an input clause, it is in the core•
if𝑪 is a RUP clause, mark its antecedents•
if𝑪 is an SR clause upon 𝝈...?•

𝑬𝟎𝑬𝟎 mark

sub
𝑨𝟎

𝑬𝟏𝑬𝟏 mark

res
𝑨𝟏

𝑬𝟐𝑬𝟐 mark

res
𝑨𝟐

⋱
𝑨𝒏−𝟏

𝑬𝒏𝑬𝒏 mark

res
𝑪

marked

newly
marked

can we do better
than this fixpoint
computation?

for eachmarked𝑫, 𝝈(𝑫) is a RUP clause over 𝑭| ̄𝑪 ⇒ mark their antecedents

3



Problem 3: cores and trimming under interference

Generating an unsatisfiable core from a proof

mark the empty clause and proceed backwards

if𝑪 is not marked, skip it•
if𝑪 is an input clause, it is in the core•
if𝑪 is a RUP clause, mark its antecedents•
if𝑪 is an SR clause upon 𝝈...?•

𝑬𝟎𝑬𝟎 mark

sub
𝑨𝟎

𝑬𝟏𝑬𝟏 mark

res
𝑨𝟏

𝑬𝟐𝑬𝟐 mark

res
𝑨𝟐

⋱
𝑨𝒏−𝟏

𝑬𝒏𝑬𝒏 mark

res
𝑪

marked

newly
marked

can we do better
than this fixpoint
computation?

for eachmarked𝑫, 𝝈(𝑫) is a RUP clause over 𝑭| ̄𝑪 ⇒ mark their antecedents

3



Problem 3: cores and trimming under interference

Generating an unsatisfiable core from a proof

mark the empty clause and proceed backwards
if𝑪 is not marked, skip it•

if𝑪 is an input clause, it is in the core•
if𝑪 is a RUP clause, mark its antecedents•
if𝑪 is an SR clause upon 𝝈...?•

𝑬𝟎𝑬𝟎 mark

sub
𝑨𝟎

𝑬𝟏𝑬𝟏 mark

res
𝑨𝟏

𝑬𝟐𝑬𝟐 mark

res
𝑨𝟐

⋱
𝑨𝒏−𝟏

𝑬𝒏𝑬𝒏 mark

res
𝑪

marked

newly
marked

can we do better
than this fixpoint
computation?

for eachmarked𝑫, 𝝈(𝑫) is a RUP clause over 𝑭| ̄𝑪 ⇒ mark their antecedents

3



Problem 3: cores and trimming under interference

Generating an unsatisfiable core from a proof

mark the empty clause and proceed backwards
if𝑪 is not marked, skip it•
if𝑪 is an input clause, it is in the core•

if𝑪 is a RUP clause, mark its antecedents•
if𝑪 is an SR clause upon 𝝈...?•

𝑬𝟎𝑬𝟎 mark

sub
𝑨𝟎

𝑬𝟏𝑬𝟏 mark

res
𝑨𝟏

𝑬𝟐𝑬𝟐 mark

res
𝑨𝟐

⋱
𝑨𝒏−𝟏

𝑬𝒏𝑬𝒏 mark

res
𝑪

marked

newly
marked

can we do better
than this fixpoint
computation?

for eachmarked𝑫, 𝝈(𝑫) is a RUP clause over 𝑭| ̄𝑪 ⇒ mark their antecedents

3



Problem 3: cores and trimming under interference

Generating an unsatisfiable core from a proof

mark the empty clause and proceed backwards
if𝑪 is not marked, skip it•
if𝑪 is an input clause, it is in the core•
if𝑪 is a RUP clause, mark its antecedents•

if𝑪 is an SR clause upon 𝝈...?•

𝑬𝟎𝑬𝟎 mark

sub
𝑨𝟎

𝑬𝟏𝑬𝟏 mark

res
𝑨𝟏

𝑬𝟐𝑬𝟐 mark

res
𝑨𝟐

⋱
𝑨𝒏−𝟏

𝑬𝒏𝑬𝒏 mark

res
𝑪

marked

newly
marked

can we do better
than this fixpoint
computation?

for eachmarked𝑫, 𝝈(𝑫) is a RUP clause over 𝑭| ̄𝑪 ⇒ mark their antecedents

3



Problem 3: cores and trimming under interference

Generating an unsatisfiable core from a proof

mark the empty clause and proceed backwards
if𝑪 is not marked, skip it•
if𝑪 is an input clause, it is in the core•
if𝑪 is a RUP clause, mark its antecedents•

if𝑪 is an SR clause upon 𝝈...?•

𝑬𝟎

𝑬𝟎 mark

sub
𝑨𝟎 𝑬𝟏

𝑬𝟏 mark

res
𝑨𝟏 𝑬𝟐

𝑬𝟐 mark

res
𝑨𝟐

⋱
𝑨𝒏−𝟏 𝑬𝒏

𝑬𝒏 mark

res
𝑪

marked

newly
marked

can we do better
than this fixpoint
computation?

for eachmarked𝑫, 𝝈(𝑫) is a RUP clause over 𝑭| ̄𝑪 ⇒ mark their antecedents

3



Problem 3: cores and trimming under interference

Generating an unsatisfiable core from a proof

mark the empty clause and proceed backwards
if𝑪 is not marked, skip it•
if𝑪 is an input clause, it is in the core•
if𝑪 is a RUP clause, mark its antecedents•

if𝑪 is an SR clause upon 𝝈...?•

𝑬𝟎

𝑬𝟎 mark
sub

𝑨𝟎

𝑬𝟏

𝑬𝟏 mark
res

𝑨𝟏

𝑬𝟐

𝑬𝟐 mark
res

𝑨𝟐
⋱

𝑨𝒏−𝟏

𝑬𝒏

𝑬𝒏 mark
res

𝑪

marked

newly
marked

can we do better
than this fixpoint
computation?

for eachmarked𝑫, 𝝈(𝑫) is a RUP clause over 𝑭| ̄𝑪 ⇒ mark their antecedents

3



Problem 3: cores and trimming under interference

Generating an unsatisfiable core from a proof

mark the empty clause and proceed backwards
if𝑪 is not marked, skip it•
if𝑪 is an input clause, it is in the core•
if𝑪 is a RUP clause, mark its antecedents•
if𝑪 is an SR clause upon 𝝈...?•

𝑬𝟎

𝑬𝟎 mark

sub
𝑨𝟎 𝑬𝟏

𝑬𝟏 mark

res
𝑨𝟏 𝑬𝟐

𝑬𝟐 mark

res
𝑨𝟐

⋱
𝑨𝒏−𝟏 𝑬𝒏

𝑬𝒏 mark

res
𝑪

marked

newly
marked

can we do better
than this fixpoint
computation?

for eachmarked𝑫, 𝝈(𝑫) is a RUP clause over 𝑭| ̄𝑪 ⇒ mark their antecedents

3



Problem 3: cores and trimming under interference

Generating an unsatisfiable core from a proof

mark the empty clause and proceed backwards
if𝑪 is not marked, skip it•
if𝑪 is an input clause, it is in the core•
if𝑪 is a RUP clause, mark its antecedents•
if𝑪 is an SR clause upon 𝝈...?•

𝑬𝟎

𝑬𝟎 mark

sub
𝑨𝟎 𝑬𝟏

𝑬𝟏 mark

res
𝑨𝟏 𝑬𝟐

𝑬𝟐 mark

res
𝑨𝟐

⋱
𝑨𝒏−𝟏 𝑬𝒏

𝑬𝒏 mark

res
𝑪

marked

newly
marked

can we do better
than this fixpoint
computation?

for eachmarked𝑫, 𝝈(𝑫) is a RUP clause over 𝑭| ̄𝑪 ⇒ mark their antecedents

3



Problem 3: cores and trimming under interference

Generating an unsatisfiable core from a proof

mark the empty clause and proceed backwards
if𝑪 is not marked, skip it•
if𝑪 is an input clause, it is in the core•
if𝑪 is a RUP clause, mark its antecedents•
if𝑪 is an SR clause upon 𝝈...?•

𝑬𝟎

𝑬𝟎 mark

sub
𝑨𝟎 𝑬𝟏

𝑬𝟏 mark

res
𝑨𝟏 𝑬𝟐

𝑬𝟐 mark

res
𝑨𝟐

⋱
𝑨𝒏−𝟏 𝑬𝒏

𝑬𝒏 mark

res
𝑪

marked

newly
marked

can we do better
than this fixpoint
computation?

for eachmarked𝑫, 𝝈(𝑫) is a RUP clause over 𝑭| ̄𝑪 ⇒ mark their antecedents

3



Problem 3: cores and trimming under interference

Generating an unsatisfiable core from a proof

mark the empty clause and proceed backwards
if𝑪 is not marked, skip it•
if𝑪 is an input clause, it is in the core•
if𝑪 is a RUP clause, mark its antecedents•
if𝑪 is an SR clause upon 𝝈...?•

𝑬𝟎

𝑬𝟎 mark

sub
𝑨𝟎 𝑬𝟏

𝑬𝟏 mark

res
𝑨𝟏 𝑬𝟐

𝑬𝟐 mark

res
𝑨𝟐

⋱
𝑨𝒏−𝟏 𝑬𝒏

𝑬𝒏 mark

res
𝑪

marked

newly
marked

can we do better
than this fixpoint
computation?

for eachmarked𝑫, 𝝈(𝑫) is a RUP clause over 𝑭| ̄𝑪 ⇒ mark their antecedents

3



Problem 3: cores and trimming under interference

Generating an unsatisfiable core from a proof

mark the empty clause and proceed backwards
if𝑪 is not marked, skip it•
if𝑪 is an input clause, it is in the core•
if𝑪 is a RUP clause, mark its antecedents•
if𝑪 is an SR clause upon 𝝈...?•

𝑬𝟎

𝑬𝟎 mark

sub
𝑨𝟎 𝑬𝟏

𝑬𝟏 mark

res
𝑨𝟏 𝑬𝟐

𝑬𝟐 mark

res
𝑨𝟐

⋱
𝑨𝒏−𝟏 𝑬𝒏

𝑬𝒏 mark

res
𝑪

marked

newly
marked

can we do better
than this fixpoint
computation?

for eachmarked𝑫, 𝝈(𝑫) is a RUP clause over 𝑭| ̄𝑪 ⇒ mark their antecedents

3



Problem 3: cores and trimming under interference

Generating an unsatisfiable core from a proof

mark the empty clause and proceed backwards
if𝑪 is not marked, skip it•
if𝑪 is an input clause, it is in the core•
if𝑪 is a RUP clause, mark its antecedents•
if𝑪 is an SR clause upon 𝝈...?•

𝑬𝟎

𝑬𝟎 mark

sub
𝑨𝟎 𝑬𝟏

𝑬𝟏 mark

res
𝑨𝟏 𝑬𝟐

𝑬𝟐 mark

res
𝑨𝟐

⋱
𝑨𝒏−𝟏 𝑬𝒏

𝑬𝒏 mark

res
𝑪

marked

newly
marked

can we do better
than this fixpoint
computation?

for eachmarked𝑫, 𝝈(𝑫) is a RUP clause over 𝑭| ̄𝑪 ⇒ mark their antecedents

3



Problem 3: cores and trimming under interference

Generating an unsatisfiable core from a proof

mark the empty clause and proceed backwards
if𝑪 is not marked, skip it•
if𝑪 is an input clause, it is in the core•
if𝑪 is a RUP clause, mark its antecedents•
if𝑪 is an SR clause upon 𝝈...?•

𝑬𝟎

𝑬𝟎 mark

sub
𝑨𝟎 𝑬𝟏

𝑬𝟏 mark

res
𝑨𝟏 𝑬𝟐

𝑬𝟐 mark

res
𝑨𝟐

⋱
𝑨𝒏−𝟏 𝑬𝒏

𝑬𝒏 mark

res
𝑪

marked

newly
marked

can we do better
than this fixpoint
computation?

for eachmarked𝑫, 𝝈(𝑫) is a RUP clause over 𝑭| ̄𝑪 ⇒ mark their antecedents

3



Problem 3: cores and trimming under interference

Generating an unsatisfiable core from a proof

mark the empty clause and proceed backwards
if𝑪 is not marked, skip it•
if𝑪 is an input clause, it is in the core•
if𝑪 is a RUP clause, mark its antecedents•
if𝑪 is an SR clause upon 𝝈...?•

𝑬𝟎

𝑬𝟎 mark

sub
𝑨𝟎 𝑬𝟏

𝑬𝟏 mark

res
𝑨𝟏 𝑬𝟐

𝑬𝟐 mark

res
𝑨𝟐

⋱
𝑨𝒏−𝟏 𝑬𝒏

𝑬𝒏 mark

res
𝑪

marked

newly
marked

can we do better
than this fixpoint
computation?

for eachmarked𝑫, 𝝈(𝑫) is a RUP clause over 𝑭| ̄𝑪 ⇒ mark their antecedents

3



In this talk...

DRAT/DPR/DSR
proofs

mutation logic

interference
as inference

WSR proofs

pigeonhole
refutation

interference-free
lemmas

non-fixpoint
cores and trimming

4



In this talk...

DRAT/DPR/DSR
proofs mutation logic

interference
as inference

WSR proofs

pigeonhole
refutation

interference-free
lemmas

non-fixpoint
cores and trimming

4



In this talk...

DRAT/DPR/DSR
proofs mutation logic

interference
as inference

WSR proofs

pigeonhole
refutation

interference-free
lemmas

non-fixpoint
cores and trimming

4



In this talk...

DRAT/DPR/DSR
proofs mutation logic

interference
as inference

WSR proofs

pigeonhole
refutation

interference-free
lemmas

non-fixpoint
cores and trimming

4



In this talk...

DRAT/DPR/DSR
proofs mutation logic

interference
as inference

WSR proofs

pigeonhole
refutation

interference-free
lemmas

non-fixpoint
cores and trimming

4



The interference zoo

Propagation-based redundancy notions

RUPRAT
PR

SR

[Goldberg, Novikov ’03][Järvisalo, Heule, Biere ’12][Heule, Kiesl, Biere ’17][Buss, Thapen ’19]

DRUP deletion + RUP
DRAT deletion + RAT
DPR deletion + PR
DSR deletion + SR

𝑪 is a reverse unit propagation (RUP) over 𝑭whenever unit propagation over
𝑭 ∧ ¬𝑪 reaches a conflict

Properties

RUP is monotonic if 𝑭 ⊆ 𝑮, then𝑪 is a RUP over𝑮

RAT/PR/SR are non-monotonic!

RUP preserves models every model of 𝑭 is a model of 𝑭 ∧ 𝑪

RAT/PR/SR preserve satisfiability: if 𝑭 is satisfiable, then so is 𝑭 ∧ 𝑪

RUP has a dependency structure 𝑪 is an iterated resolvent over 𝑭

RAT/PR/SR depend on the absence of clauses

lack of these
properties is called

interference

5



The interference zoo

Propagation-based redundancy notions

RUP

RAT
PR

SR

[Goldberg, Novikov ’03]

[Järvisalo, Heule, Biere ’12][Heule, Kiesl, Biere ’17][Buss, Thapen ’19]

DRUP deletion + RUP
DRAT deletion + RAT
DPR deletion + PR
DSR deletion + SR

𝑪 is a reverse unit propagation (RUP) over 𝑭whenever unit propagation over
𝑭 ∧ ¬𝑪 reaches a conflict

Properties

RUP is monotonic if 𝑭 ⊆ 𝑮, then𝑪 is a RUP over𝑮

RAT/PR/SR are non-monotonic!

RUP preserves models every model of 𝑭 is a model of 𝑭 ∧ 𝑪

RAT/PR/SR preserve satisfiability: if 𝑭 is satisfiable, then so is 𝑭 ∧ 𝑪

RUP has a dependency structure 𝑪 is an iterated resolvent over 𝑭

RAT/PR/SR depend on the absence of clauses

lack of these
properties is called

interference

5



The interference zoo

Propagation-based redundancy notions

RUP

RAT
PR

SR

[Goldberg, Novikov ’03][Järvisalo, Heule, Biere ’12][Heule, Kiesl, Biere ’17][Buss, Thapen ’19]

DRUP deletion + RUP
DRAT deletion + RAT
DPR deletion + PR
DSR deletion + SR

𝑪 is a reverse unit propagation (RUP) over 𝑭whenever unit propagation over
𝑭 ∧ ¬𝑪 reaches a conflict

Properties

RUP is monotonic if 𝑭 ⊆ 𝑮, then𝑪 is a RUP over𝑮

RAT/PR/SR are non-monotonic!

RUP preserves models every model of 𝑭 is a model of 𝑭 ∧ 𝑪

RAT/PR/SR preserve satisfiability: if 𝑭 is satisfiable, then so is 𝑭 ∧ 𝑪

RUP has a dependency structure 𝑪 is an iterated resolvent over 𝑭

RAT/PR/SR depend on the absence of clauses

lack of these
properties is called

interference

5



The interference zoo

Propagation-based redundancy notions

RUP

RAT
PR

SR

[Goldberg, Novikov ’03][Järvisalo, Heule, Biere ’12][Heule, Kiesl, Biere ’17][Buss, Thapen ’19]

DRUP deletion + RUP
DRAT deletion + RAT
DPR deletion + PR
DSR deletion + SR

𝑪 is a reverse unit propagation (RUP) over 𝑭whenever unit propagation over
𝑭 ∧ ¬𝑪 reaches a conflict

Properties
RUP is monotonic if 𝑭 ⊆ 𝑮, then𝑪 is a RUP over𝑮

RAT/PR/SR are non-monotonic!

RUP preserves models every model of 𝑭 is a model of 𝑭 ∧ 𝑪

RAT/PR/SR preserve satisfiability: if 𝑭 is satisfiable, then so is 𝑭 ∧ 𝑪

RUP has a dependency structure 𝑪 is an iterated resolvent over 𝑭

RAT/PR/SR depend on the absence of clauses

lack of these
properties is called

interference

5



The interference zoo

Propagation-based redundancy notions

RUP

RAT
PR

SR

[Goldberg, Novikov ’03][Järvisalo, Heule, Biere ’12][Heule, Kiesl, Biere ’17][Buss, Thapen ’19]

DRUP deletion + RUP
DRAT deletion + RAT
DPR deletion + PR
DSR deletion + SR

𝑪 is a reverse unit propagation (RUP) over 𝑭whenever unit propagation over
𝑭 ∧ ¬𝑪 reaches a conflict

Properties
RUP is monotonic if 𝑭 ⊆ 𝑮, then𝑪 is a RUP over𝑮

RAT/PR/SR are non-monotonic!

RUP preserves models every model of 𝑭 is a model of 𝑭 ∧ 𝑪

RAT/PR/SR preserve satisfiability: if 𝑭 is satisfiable, then so is 𝑭 ∧ 𝑪

RUP has a dependency structure 𝑪 is an iterated resolvent over 𝑭

RAT/PR/SR depend on the absence of clauses

lack of these
properties is called

interference

5



The interference zoo

Propagation-based redundancy notions

RUP

RAT
PR

SR

[Goldberg, Novikov ’03][Järvisalo, Heule, Biere ’12][Heule, Kiesl, Biere ’17][Buss, Thapen ’19]

DRUP deletion + RUP
DRAT deletion + RAT
DPR deletion + PR
DSR deletion + SR

𝑪 is a reverse unit propagation (RUP) over 𝑭whenever unit propagation over
𝑭 ∧ ¬𝑪 reaches a conflict

Properties
RUP is monotonic if 𝑭 ⊆ 𝑮, then𝑪 is a RUP over𝑮

RAT/PR/SR are non-monotonic!

RUP preserves models every model of 𝑭 is a model of 𝑭 ∧ 𝑪

RAT/PR/SR preserve satisfiability: if 𝑭 is satisfiable, then so is 𝑭 ∧ 𝑪

RUP has a dependency structure 𝑪 is an iterated resolvent over 𝑭

RAT/PR/SR depend on the absence of clauses

lack of these
properties is called

interference

5



The interference zoo

Propagation-based redundancy notions

RUPRAT

PR

SR

[Goldberg, Novikov ’03]

[Järvisalo, Heule, Biere ’12]

[Heule, Kiesl, Biere ’17][Buss, Thapen ’19]

DRUP deletion + RUP
DRAT deletion + RAT
DPR deletion + PR
DSR deletion + SR

𝑪 is a reverse unit propagation (RUP) over 𝑭whenever unit propagation over
𝑭 ∧ ¬𝑪 reaches a conflict

Properties
RUP is monotonic if 𝑭 ⊆ 𝑮, then𝑪 is a RUP over𝑮

RAT/PR/SR are non-monotonic!

RUP preserves models every model of 𝑭 is a model of 𝑭 ∧ 𝑪

RAT/PR/SR preserve satisfiability: if 𝑭 is satisfiable, then so is 𝑭 ∧ 𝑪

RUP has a dependency structure 𝑪 is an iterated resolvent over 𝑭

RAT/PR/SR depend on the absence of clauses

lack of these
properties is called

interference

5



The interference zoo

Propagation-based redundancy notions

RUPRAT
PR

SR

[Goldberg, Novikov ’03][Järvisalo, Heule, Biere ’12]

[Heule, Kiesl, Biere ’17]

[Buss, Thapen ’19]

DRUP deletion + RUP
DRAT deletion + RAT
DPR deletion + PR
DSR deletion + SR

𝑪 is a reverse unit propagation (RUP) over 𝑭whenever unit propagation over
𝑭 ∧ ¬𝑪 reaches a conflict

Properties
RUP is monotonic if 𝑭 ⊆ 𝑮, then𝑪 is a RUP over𝑮

RAT/PR/SR are non-monotonic!

RUP preserves models every model of 𝑭 is a model of 𝑭 ∧ 𝑪

RAT/PR/SR preserve satisfiability: if 𝑭 is satisfiable, then so is 𝑭 ∧ 𝑪

RUP has a dependency structure 𝑪 is an iterated resolvent over 𝑭

RAT/PR/SR depend on the absence of clauses

lack of these
properties is called

interference

5



The interference zoo

Propagation-based redundancy notions

RUPRAT
PR

SR

[Goldberg, Novikov ’03][Järvisalo, Heule, Biere ’12][Heule, Kiesl, Biere ’17]

[Buss, Thapen ’19]

DRUP deletion + RUP
DRAT deletion + RAT
DPR deletion + PR
DSR deletion + SR

𝑪 is a reverse unit propagation (RUP) over 𝑭whenever unit propagation over
𝑭 ∧ ¬𝑪 reaches a conflict

Properties
RUP is monotonic if 𝑭 ⊆ 𝑮, then𝑪 is a RUP over𝑮

RAT/PR/SR are non-monotonic!

RUP preserves models every model of 𝑭 is a model of 𝑭 ∧ 𝑪

RAT/PR/SR preserve satisfiability: if 𝑭 is satisfiable, then so is 𝑭 ∧ 𝑪

RUP has a dependency structure 𝑪 is an iterated resolvent over 𝑭

RAT/PR/SR depend on the absence of clauses

lack of these
properties is called

interference

5



The interference zoo

Propagation-based redundancy notions

RUPRAT
PR

SR

[Goldberg, Novikov ’03][Järvisalo, Heule, Biere ’12][Heule, Kiesl, Biere ’17][Buss, Thapen ’19]

DRUP deletion + RUP
DRAT deletion + RAT
DPR deletion + PR
DSR deletion + SR

𝑪 is a reverse unit propagation (RUP) over 𝑭whenever unit propagation over
𝑭 ∧ ¬𝑪 reaches a conflict

Properties
RUP is monotonic if 𝑭 ⊆ 𝑮, then𝑪 is a RUP over𝑮

RAT/PR/SR are non-monotonic!

RUP preserves models every model of 𝑭 is a model of 𝑭 ∧ 𝑪

RAT/PR/SR preserve satisfiability: if 𝑭 is satisfiable, then so is 𝑭 ∧ 𝑪

RUP has a dependency structure 𝑪 is an iterated resolvent over 𝑭

RAT/PR/SR depend on the absence of clauses

lack of these
properties is called

interference

5



The interference zoo

Propagation-based redundancy notions

RUPRAT
PR

SR

[Goldberg, Novikov ’03][Järvisalo, Heule, Biere ’12][Heule, Kiesl, Biere ’17][Buss, Thapen ’19]

DRUP deletion + RUP
DRAT deletion + RAT
DPR deletion + PR
DSR deletion + SR

𝑪 is a reverse unit propagation (RUP) over 𝑭whenever unit propagation over
𝑭 ∧ ¬𝑪 reaches a conflict

Properties
RUP is monotonic if 𝑭 ⊆ 𝑮, then𝑪 is a RUP over𝑮

RAT/PR/SR are non-monotonic!

RUP preserves models every model of 𝑭 is a model of 𝑭 ∧ 𝑪
RAT/PR/SR preserve satisfiability: if 𝑭 is satisfiable, then so is 𝑭 ∧ 𝑪

RUP has a dependency structure 𝑪 is an iterated resolvent over 𝑭

RAT/PR/SR depend on the absence of clauses

lack of these
properties is called

interference

5



The interference zoo

Propagation-based redundancy notions

RUPRAT
PR

SR

[Goldberg, Novikov ’03][Järvisalo, Heule, Biere ’12][Heule, Kiesl, Biere ’17][Buss, Thapen ’19]

DRUP deletion + RUP
DRAT deletion + RAT
DPR deletion + PR
DSR deletion + SR

𝑪 is a reverse unit propagation (RUP) over 𝑭whenever unit propagation over
𝑭 ∧ ¬𝑪 reaches a conflict

Properties
RUP is monotonic if 𝑭 ⊆ 𝑮, then𝑪 is a RUP over𝑮

RAT/PR/SR are non-monotonic!

RUP preserves models every model of 𝑭 is a model of 𝑭 ∧ 𝑪
RAT/PR/SR preserve satisfiability: if 𝑭 is satisfiable, then so is 𝑭 ∧ 𝑪

RUP has a dependency structure 𝑪 is an iterated resolvent over 𝑭
RAT/PR/SR depend on the absence of clauses

lack of these
properties is called

interference

5



The interference zoo

Propagation-based redundancy notions

RUPRAT
PR

SR

[Goldberg, Novikov ’03][Järvisalo, Heule, Biere ’12][Heule, Kiesl, Biere ’17][Buss, Thapen ’19]

DRUP deletion + RUP
DRAT deletion + RAT
DPR deletion + PR
DSR deletion + SR

𝑪 is a reverse unit propagation (RUP) over 𝑭whenever unit propagation over
𝑭 ∧ ¬𝑪 reaches a conflict

Properties
RUP is monotonic if 𝑭 ⊆ 𝑮, then𝑪 is a RUP over𝑮

RAT/PR/SR are non-monotonic!

RUP preserves models every model of 𝑭 is a model of 𝑭 ∧ 𝑪
RAT/PR/SR preserve satisfiability: if 𝑭 is satisfiable, then so is 𝑭 ∧ 𝑪

RUP has a dependency structure 𝑪 is an iterated resolvent over 𝑭
RAT/PR/SR depend on the absence of clauses

lack of these
properties is called

interference

5



The interference zoo

Propagation-based redundancy notions

RUPRAT
PR

SR

[Goldberg, Novikov ’03][Järvisalo, Heule, Biere ’12][Heule, Kiesl, Biere ’17][Buss, Thapen ’19]

DRUP deletion + RUP
DRAT deletion + RAT
DPR deletion + PR
DSR deletion + SR

𝑪 is a reverse unit propagation (RUP) over 𝑭whenever unit propagation over
𝑭 ∧ ¬𝑪 reaches a conflict

Properties
RUP is monotonic if 𝑭 ⊆ 𝑮, then𝑪 is a RUP over𝑮

RAT/PR/SR are non-monotonic!

RUP preserves models every model of 𝑭 is a model of 𝑭 ∧ 𝑪
RAT/PR/SR preserve satisfiability: if 𝑭 is satisfiable, then so is 𝑭 ∧ 𝑪

RUP has a dependency structure 𝑪 is an iterated resolvent over 𝑭
RAT/PR/SR depend on the absence of clauses

lack of these
properties is called

interference

5



Substitution redundancy

𝑭
𝑪
𝝈

CNF formula
clause
atomic substitution

𝑪 is a substitution redundant (SR) clause over 𝑭 upon 𝝈whenever:
the clause 𝝈(𝑪) is a tautology•
for each clause𝑫 ∈ 𝑭, the clause𝑪 ∨ 𝝈(𝑫) is a RUP clause over 𝑭•

Theorem if𝑪 is an SR clause over 𝑭 upon 𝝈, then 𝑭 ≡sat 𝑭 ∧ 𝑪

Intuition if a model of 𝑭 falsifies𝑪, then 𝝈 transforms that model into
amodel of 𝑭 ∧ 𝑪.

this is reasoning without loss of generality!

can we relax the conditions for SR?

6



Substitution redundancy

𝑭
𝑪
𝝈

CNF formula
clause
atomic substitution

𝑪 is a substitution redundant (SR) clause over 𝑭 upon 𝝈whenever:
the clause 𝝈(𝑪) is a tautology•
for each clause𝑫 ∈ 𝑭, the clause𝑪 ∨ 𝝈(𝑫) is a RUP clause over 𝑭•

Theorem if𝑪 is an SR clause over 𝑭 upon 𝝈, then 𝑭 ≡sat 𝑭 ∧ 𝑪

Intuition if a model of 𝑭 falsifies𝑪, then 𝝈 transforms that model into
amodel of 𝑭 ∧ 𝑪.

this is reasoning without loss of generality!

can we relax the conditions for SR?

6



Substitution redundancy

𝑭
𝑪
𝝈

CNF formula
clause
atomic substitution

𝑪 is a substitution redundant (SR) clause over 𝑭 upon 𝝈whenever:
the clause 𝝈(𝑪) is a tautology•
for each clause𝑫 ∈ 𝑭, the clause𝑪 ∨ 𝝈(𝑫) is a RUP clause over 𝑭•

Theorem if𝑪 is an SR clause over 𝑭 upon 𝝈, then 𝑭 ≡sat 𝑭 ∧ 𝑪

Intuition if a model of 𝑭 falsifies𝑪, then 𝝈 transforms that model into
amodel of 𝑭 ∧ 𝑪.

this is reasoning without loss of generality!

can we relax the conditions for SR?

6



Substitution redundancy

𝑭
𝑪
𝝈

CNF formula
clause
atomic substitution

𝑪 is a substitution redundant (SR) clause over 𝑭 upon 𝝈whenever:
the clause 𝝈(𝑪) is a tautology•
for each clause𝑫 ∈ 𝑭, the clause𝑪 ∨ 𝝈(𝑫) is a RUP clause over 𝑭•

Theorem if𝑪 is an SR clause over 𝑭 upon 𝝈, then 𝑭 ≡sat 𝑭 ∧ 𝑪

Intuition if a model of 𝑭 falsifies𝑪, then 𝝈 transforms that model into
amodel of 𝑭 ∧ 𝑪.

this is reasoning without loss of generality!

can we relax the conditions for SR?

6



Substitution redundancy

𝑭
𝑪
𝝈

CNF formula
clause
atomic substitution

𝑪 is a substitution redundant (SR) clause over 𝑭 upon 𝝈whenever:
the clause 𝝈(𝑪) is a tautology•
for each clause𝑫 ∈ 𝑭, the clause𝑪 ∨ 𝝈(𝑫) is a RUP clause over 𝑭•

Theorem if𝑪 is an SR clause over 𝑭 upon 𝝈, then 𝑭 ≡sat 𝑭 ∧ 𝑪

Intuition if a model of 𝑭 falsifies𝑪, then 𝝈 transforms that model into
amodel of 𝑭 ∧ 𝑪.

this is reasoning without loss of generality!

can we relax the conditions for SR?

6



Mutation logic, or how I learned to stop worrying and love interference

Substitutions can be seen as transformations on interpretations

this extends work from [Rebola-Pardo, Suda ’18]

interpretations variables → {𝟎, 𝟏}𝑰∶
formulas → {𝟎, 𝟏}

substitutions 𝝈∶ variables → formulas

mutations 𝑰 ∘ 𝝈∶ variables → {𝟎, 𝟏}

conditional
mutations 𝑰 ∘ (𝝈 ∶− 𝑸) =

{
𝑰 ∘ 𝝈 if 𝑰 ⊨ 𝑸
𝑰 if 𝑰 ⊭ 𝑸

triggereffect

Mutation logic propositional logic + mutation operator

𝑰 ⊨ ∇(𝝈 ∶− 𝑸). 𝑭 iff 𝑰 ∘ (𝝈 ∶− 𝑸) ⊨ 𝑭

Theorem if𝑪 is an SR clause over 𝑭 upon 𝝈, then 𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪).𝑭 ∧ 𝑪

7



Mutation logic, or how I learned to stop worrying and love interference

Substitutions can be seen as transformations on interpretations

this extends work from [Rebola-Pardo, Suda ’18]

interpretations variables → {𝟎, 𝟏}𝑰∶
formulas → {𝟎, 𝟏}

substitutions 𝝈∶ variables → formulas

mutations 𝑰 ∘ 𝝈∶ variables → {𝟎, 𝟏}

conditional
mutations 𝑰 ∘ (𝝈 ∶− 𝑸) =

{
𝑰 ∘ 𝝈 if 𝑰 ⊨ 𝑸
𝑰 if 𝑰 ⊭ 𝑸

triggereffect

Mutation logic propositional logic + mutation operator

𝑰 ⊨ ∇(𝝈 ∶− 𝑸). 𝑭 iff 𝑰 ∘ (𝝈 ∶− 𝑸) ⊨ 𝑭

Theorem if𝑪 is an SR clause over 𝑭 upon 𝝈, then 𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪).𝑭 ∧ 𝑪

7



Mutation logic, or how I learned to stop worrying and love interference

Substitutions can be seen as transformations on interpretations

this extends work from [Rebola-Pardo, Suda ’18]

interpretations variables → {𝟎, 𝟏}𝑰∶
formulas → {𝟎, 𝟏}

substitutions 𝝈∶ variables → formulas

mutations 𝑰 ∘ 𝝈∶ variables → {𝟎, 𝟏}

conditional
mutations 𝑰 ∘ (𝝈 ∶− 𝑸) =

{
𝑰 ∘ 𝝈 if 𝑰 ⊨ 𝑸
𝑰 if 𝑰 ⊭ 𝑸

triggereffect

Mutation logic propositional logic + mutation operator

𝑰 ⊨ ∇(𝝈 ∶− 𝑸). 𝑭 iff 𝑰 ∘ (𝝈 ∶− 𝑸) ⊨ 𝑭

Theorem if𝑪 is an SR clause over 𝑭 upon 𝝈, then 𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪).𝑭 ∧ 𝑪

7



Mutation logic, or how I learned to stop worrying and love interference

Substitutions can be seen as transformations on interpretations

this extends work from [Rebola-Pardo, Suda ’18]

interpretations variables → {𝟎, 𝟏}𝑰∶
formulas → {𝟎, 𝟏}

substitutions 𝝈∶ variables → formulas

mutations 𝑰 ∘ 𝝈∶ variables → {𝟎, 𝟏}

conditional
mutations 𝑰 ∘ (𝝈 ∶− 𝑸) =

{
𝑰 ∘ 𝝈 if 𝑰 ⊨ 𝑸
𝑰 if 𝑰 ⊭ 𝑸

triggereffect

Mutation logic propositional logic + mutation operator

𝑰 ⊨ ∇(𝝈 ∶− 𝑸). 𝑭 iff 𝑰 ∘ (𝝈 ∶− 𝑸) ⊨ 𝑭

Theorem if𝑪 is an SR clause over 𝑭 upon 𝝈, then 𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪).𝑭 ∧ 𝑪

7



Mutation logic, or how I learned to stop worrying and love interference

Substitutions can be seen as transformations on interpretations

this extends work from [Rebola-Pardo, Suda ’18]

interpretations variables → {𝟎, 𝟏}𝑰∶
formulas → {𝟎, 𝟏}

substitutions 𝝈∶ variables → formulas

mutations 𝑰 ∘ 𝝈∶ variables → {𝟎, 𝟏}

conditional
mutations 𝑰 ∘ (𝝈 ∶− 𝑸) =

{
𝑰 ∘ 𝝈 if 𝑰 ⊨ 𝑸
𝑰 if 𝑰 ⊭ 𝑸

triggereffect

Mutation logic propositional logic + mutation operator

𝑰 ⊨ ∇(𝝈 ∶− 𝑸). 𝑭 iff 𝑰 ∘ (𝝈 ∶− 𝑸) ⊨ 𝑭

Theorem if𝑪 is an SR clause over 𝑭 upon 𝝈, then 𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪).𝑭 ∧ 𝑪

7



Mutation logic, or how I learned to stop worrying and love interference

Substitutions can be seen as transformations on interpretations

this extends work from [Rebola-Pardo, Suda ’18]

interpretations variables → {𝟎, 𝟏}𝑰∶
formulas → {𝟎, 𝟏}

substitutions 𝝈∶ variables → formulas

mutations 𝑰 ∘ 𝝈∶ variables → {𝟎, 𝟏}

conditional
mutations 𝑰 ∘ (𝝈 ∶− 𝑸) =

{
𝑰 ∘ 𝝈 if 𝑰 ⊨ 𝑸
𝑰 if 𝑰 ⊭ 𝑸

triggereffect

Mutation logic propositional logic + mutation operator

𝑰 ⊨ ∇(𝝈 ∶− 𝑸). 𝑭 iff 𝑰 ∘ (𝝈 ∶− 𝑸) ⊨ 𝑭

Theorem if𝑪 is an SR clause over 𝑭 upon 𝝈, then 𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪).𝑭 ∧ 𝑪

7



Mutation logic, or how I learned to stop worrying and love interference

Substitutions can be seen as transformations on interpretations

this extends work from [Rebola-Pardo, Suda ’18]

interpretations variables → {𝟎, 𝟏}𝑰∶
formulas → {𝟎, 𝟏}

substitutions 𝝈∶ variables → formulas

mutations 𝑰 ∘ 𝝈∶ variables → {𝟎, 𝟏}

conditional
mutations 𝑰 ∘ (𝝈 ∶− 𝑸) =

{
𝑰 ∘ 𝝈 if 𝑰 ⊨ 𝑸
𝑰 if 𝑰 ⊭ 𝑸

triggereffect

Mutation logic propositional logic + mutation operator

𝑰 ⊨

∇(𝝈 ∶− 𝑸). 𝑭

iff 𝑰 ∘ (𝝈 ∶− 𝑸) ⊨ 𝑭

Theorem if𝑪 is an SR clause over 𝑭 upon 𝝈, then 𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪).𝑭 ∧ 𝑪

7



Mutation logic, or how I learned to stop worrying and love interference

Substitutions can be seen as transformations on interpretations

this extends work from [Rebola-Pardo, Suda ’18]

interpretations variables → {𝟎, 𝟏}𝑰∶
formulas → {𝟎, 𝟏}

substitutions 𝝈∶ variables → formulas

mutations 𝑰 ∘ 𝝈∶ variables → {𝟎, 𝟏}

conditional
mutations 𝑰 ∘ (𝝈 ∶− 𝑸) =

{
𝑰 ∘ 𝝈 if 𝑰 ⊨ 𝑸
𝑰 if 𝑰 ⊭ 𝑸

triggereffect

Mutation logic propositional logic + mutation operator

𝑰 ⊨ ∇(𝝈 ∶− 𝑸). 𝑭 iff 𝑰 ∘ (𝝈 ∶− 𝑸) ⊨ 𝑭

Theorem if𝑪 is an SR clause over 𝑭 upon 𝝈, then 𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪).𝑭 ∧ 𝑪

7



Mutation logic, or how I learned to stop worrying and love interference

Substitutions can be seen as transformations on interpretations

this extends work from [Rebola-Pardo, Suda ’18]

interpretations variables → {𝟎, 𝟏}𝑰∶
formulas → {𝟎, 𝟏}

substitutions 𝝈∶ variables → formulas

mutations 𝑰 ∘ 𝝈∶ variables → {𝟎, 𝟏}

conditional
mutations 𝑰 ∘ (𝝈 ∶− 𝑸) =

{
𝑰 ∘ 𝝈 if 𝑰 ⊨ 𝑸
𝑰 if 𝑰 ⊭ 𝑸

triggereffect

Mutation logic propositional logic + mutation operator

𝑰 ⊨ ∇(𝝈 ∶− 𝑸). 𝑭 iff 𝑰 ∘ (𝝈 ∶− 𝑸) ⊨ 𝑭

Theorem if𝑪 is an SR clause over 𝑭 upon 𝝈, then 𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪).𝑭 ∧ 𝑪

7



Interference is inference (in mutation logic)

𝑰 ⊨ ∇(𝝈 ∶− 𝑸). 𝑭 iff 𝑰 ∘ (𝝈 ∶− 𝑸) ⊨ 𝑭

Theorem if𝑪 is an SR clause over 𝑭 upon 𝝈, then 𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪).𝑭 ∧ 𝑪

∀𝑫 ∈ 𝑭,
𝑪 ∨ 𝝈(𝑫) is RUP over 𝑭

∀𝑫 ∈ 𝑭,
𝑭 ⊨ 𝑪 ∨ 𝝈(𝑫)

∀𝑫 ∈ 𝑭,
𝑭 ∧ ̄𝑪 ⊨ 𝝈(𝑫)

∀𝑫 ∈ 𝑭,
𝑭 ∧ 𝑪 ⊨ 𝑫

∀𝑫 ∈ 𝑭,
𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪).𝑫

𝝈(𝑪) is a
tautology

𝑭 ∧ ̄𝑪 ⊨ 𝝈(𝑪) 𝑭 ∧ 𝑪 ⊨ 𝑪

𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪). 𝑪𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪). 𝑭 ∧ 𝑪

∇ distributes across ∧

put a pin on this

Interference is the same as deriving∇(𝝈 ∶− ̄𝑪).𝑫 for each𝑫 ∈ 𝑭 ∧ 𝑪

In the paper lots of details about mutation logic
+ a DAG-shaped proof system for interference!

8



Interference is inference (in mutation logic)

𝑰 ⊨ ∇(𝝈 ∶− 𝑸). 𝑭 iff 𝑰 ∘ (𝝈 ∶− 𝑸) ⊨ 𝑭

Theorem if𝑪 is an SR clause over 𝑭 upon 𝝈, then 𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪).𝑭 ∧ 𝑪

∀𝑫 ∈ 𝑭,
𝑪 ∨ 𝝈(𝑫) is RUP over 𝑭

∀𝑫 ∈ 𝑭,
𝑭 ⊨ 𝑪 ∨ 𝝈(𝑫)

∀𝑫 ∈ 𝑭,
𝑭 ∧ ̄𝑪 ⊨ 𝝈(𝑫)

∀𝑫 ∈ 𝑭,
𝑭 ∧ 𝑪 ⊨ 𝑫

∀𝑫 ∈ 𝑭,
𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪).𝑫

𝝈(𝑪) is a
tautology

𝑭 ∧ ̄𝑪 ⊨ 𝝈(𝑪) 𝑭 ∧ 𝑪 ⊨ 𝑪

𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪). 𝑪𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪). 𝑭 ∧ 𝑪

∇ distributes across ∧

put a pin on this

Interference is the same as deriving∇(𝝈 ∶− ̄𝑪).𝑫 for each𝑫 ∈ 𝑭 ∧ 𝑪

In the paper lots of details about mutation logic
+ a DAG-shaped proof system for interference!

8



Interference is inference (in mutation logic)

𝑰 ⊨ ∇(𝝈 ∶− 𝑸). 𝑭 iff 𝑰 ∘ (𝝈 ∶− 𝑸) ⊨ 𝑭

Theorem if𝑪 is an SR clause over 𝑭 upon 𝝈, then 𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪).𝑭 ∧ 𝑪

∀𝑫 ∈ 𝑭,
𝑪 ∨ 𝝈(𝑫) is RUP over 𝑭

∀𝑫 ∈ 𝑭,
𝑭 ⊨ 𝑪 ∨ 𝝈(𝑫)

∀𝑫 ∈ 𝑭,
𝑭 ∧ ̄𝑪 ⊨ 𝝈(𝑫)

∀𝑫 ∈ 𝑭,
𝑭 ∧ 𝑪 ⊨ 𝑫

∀𝑫 ∈ 𝑭,
𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪).𝑫

𝝈(𝑪) is a
tautology

𝑭 ∧ ̄𝑪 ⊨ 𝝈(𝑪) 𝑭 ∧ 𝑪 ⊨ 𝑪

𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪). 𝑪𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪). 𝑭 ∧ 𝑪

∇ distributes across ∧

put a pin on this

Interference is the same as deriving∇(𝝈 ∶− ̄𝑪).𝑫 for each𝑫 ∈ 𝑭 ∧ 𝑪

In the paper lots of details about mutation logic
+ a DAG-shaped proof system for interference!

8



Interference is inference (in mutation logic)

𝑰 ⊨ ∇(𝝈 ∶− 𝑸). 𝑭 iff 𝑰 ∘ (𝝈 ∶− 𝑸) ⊨ 𝑭

Theorem if𝑪 is an SR clause over 𝑭 upon 𝝈, then 𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪).𝑭 ∧ 𝑪

∀𝑫 ∈ 𝑭,
𝑪 ∨ 𝝈(𝑫) is RUP over 𝑭

∀𝑫 ∈ 𝑭,
𝑭 ⊨ 𝑪 ∨ 𝝈(𝑫)

∀𝑫 ∈ 𝑭,
𝑭 ∧ ̄𝑪 ⊨ 𝝈(𝑫)

∀𝑫 ∈ 𝑭,
𝑭 ∧ 𝑪 ⊨ 𝑫

∀𝑫 ∈ 𝑭,
𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪).𝑫

𝝈(𝑪) is a
tautology

𝑭 ∧ ̄𝑪 ⊨ 𝝈(𝑪) 𝑭 ∧ 𝑪 ⊨ 𝑪

𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪). 𝑪𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪). 𝑭 ∧ 𝑪

∇ distributes across ∧

put a pin on this

Interference is the same as deriving∇(𝝈 ∶− ̄𝑪).𝑫 for each𝑫 ∈ 𝑭 ∧ 𝑪

In the paper lots of details about mutation logic
+ a DAG-shaped proof system for interference!

8



Interference is inference (in mutation logic)

𝑰 ⊨ ∇(𝝈 ∶− 𝑸). 𝑭 iff 𝑰 ∘ (𝝈 ∶− 𝑸) ⊨ 𝑭

Theorem if𝑪 is an SR clause over 𝑭 upon 𝝈, then 𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪).𝑭 ∧ 𝑪

∀𝑫 ∈ 𝑭,
𝑪 ∨ 𝝈(𝑫) is RUP over 𝑭

∀𝑫 ∈ 𝑭,
𝑭 ⊨ 𝑪 ∨ 𝝈(𝑫)

∀𝑫 ∈ 𝑭,
𝑭 ∧ ̄𝑪 ⊨ 𝝈(𝑫)

∀𝑫 ∈ 𝑭,
𝑭 ∧ 𝑪 ⊨ 𝑫

∀𝑫 ∈ 𝑭,
𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪).𝑫

𝝈(𝑪) is a
tautology

𝑭 ∧ ̄𝑪 ⊨ 𝝈(𝑪) 𝑭 ∧ 𝑪 ⊨ 𝑪

𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪). 𝑪𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪). 𝑭 ∧ 𝑪

∇ distributes across ∧

put a pin on this

Interference is the same as deriving∇(𝝈 ∶− ̄𝑪).𝑫 for each𝑫 ∈ 𝑭 ∧ 𝑪

In the paper lots of details about mutation logic
+ a DAG-shaped proof system for interference!

8



Interference is inference (in mutation logic)

𝑰 ⊨ ∇(𝝈 ∶− 𝑸). 𝑭 iff 𝑰 ∘ (𝝈 ∶− 𝑸) ⊨ 𝑭

Theorem if𝑪 is an SR clause over 𝑭 upon 𝝈, then 𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪).𝑭 ∧ 𝑪

∀𝑫 ∈ 𝑭,
𝑪 ∨ 𝝈(𝑫) is RUP over 𝑭

∀𝑫 ∈ 𝑭,
𝑭 ⊨ 𝑪 ∨ 𝝈(𝑫)

∀𝑫 ∈ 𝑭,
𝑭 ∧ ̄𝑪 ⊨ 𝝈(𝑫)

∀𝑫 ∈ 𝑭,
𝑭 ∧ 𝑪 ⊨ 𝑫

∀𝑫 ∈ 𝑭,
𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪).𝑫

𝝈(𝑪) is a
tautology

𝑭 ∧ ̄𝑪 ⊨ 𝝈(𝑪) 𝑭 ∧ 𝑪 ⊨ 𝑪

𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪). 𝑪𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪). 𝑭 ∧ 𝑪

∇ distributes across ∧

put a pin on this

Interference is the same as deriving∇(𝝈 ∶− ̄𝑪).𝑫 for each𝑫 ∈ 𝑭 ∧ 𝑪

In the paper lots of details about mutation logic
+ a DAG-shaped proof system for interference!

8



Interference is inference (in mutation logic)

𝑰 ⊨ ∇(𝝈 ∶− 𝑸). 𝑭 iff 𝑰 ∘ (𝝈 ∶− 𝑸) ⊨ 𝑭

Theorem if𝑪 is an SR clause over 𝑭 upon 𝝈, then 𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪).𝑭 ∧ 𝑪

∀𝑫 ∈ 𝑭,
𝑪 ∨ 𝝈(𝑫) is RUP over 𝑭

∀𝑫 ∈ 𝑭,
𝑭 ⊨ 𝑪 ∨ 𝝈(𝑫)

∀𝑫 ∈ 𝑭,
𝑭 ∧ ̄𝑪 ⊨ 𝝈(𝑫)

∀𝑫 ∈ 𝑭,
𝑭 ∧ 𝑪 ⊨ 𝑫

∀𝑫 ∈ 𝑭,
𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪).𝑫

𝝈(𝑪) is a
tautology

𝑭 ∧ ̄𝑪 ⊨ 𝝈(𝑪) 𝑭 ∧ 𝑪 ⊨ 𝑪

𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪). 𝑪𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪). 𝑭 ∧ 𝑪

∇ distributes across ∧

put a pin on this

Interference is the same as deriving∇(𝝈 ∶− ̄𝑪).𝑫 for each𝑫 ∈ 𝑭 ∧ 𝑪

In the paper lots of details about mutation logic
+ a DAG-shaped proof system for interference!

8



Interference is inference (in mutation logic)

𝑰 ⊨ ∇(𝝈 ∶− 𝑸). 𝑭 iff 𝑰 ∘ (𝝈 ∶− 𝑸) ⊨ 𝑭

Theorem if𝑪 is an SR clause over 𝑭 upon 𝝈, then 𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪).𝑭 ∧ 𝑪

∀𝑫 ∈ 𝑭,
𝑪 ∨ 𝝈(𝑫) is RUP over 𝑭

∀𝑫 ∈ 𝑭,
𝑭 ⊨ 𝑪 ∨ 𝝈(𝑫)

∀𝑫 ∈ 𝑭,
𝑭 ∧ ̄𝑪 ⊨ 𝝈(𝑫)

∀𝑫 ∈ 𝑭,
𝑭 ∧ 𝑪 ⊨ 𝑫

∀𝑫 ∈ 𝑭,
𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪).𝑫

𝝈(𝑪) is a
tautology

𝑭 ∧ ̄𝑪 ⊨ 𝝈(𝑪)

𝑭 ∧ 𝑪 ⊨ 𝑪

𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪). 𝑪𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪). 𝑭 ∧ 𝑪

∇ distributes across ∧

put a pin on this

Interference is the same as deriving∇(𝝈 ∶− ̄𝑪).𝑫 for each𝑫 ∈ 𝑭 ∧ 𝑪

In the paper lots of details about mutation logic
+ a DAG-shaped proof system for interference!

8



Interference is inference (in mutation logic)

𝑰 ⊨ ∇(𝝈 ∶− 𝑸). 𝑭 iff 𝑰 ∘ (𝝈 ∶− 𝑸) ⊨ 𝑭

Theorem if𝑪 is an SR clause over 𝑭 upon 𝝈, then 𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪).𝑭 ∧ 𝑪

∀𝑫 ∈ 𝑭,
𝑪 ∨ 𝝈(𝑫) is RUP over 𝑭

∀𝑫 ∈ 𝑭,
𝑭 ⊨ 𝑪 ∨ 𝝈(𝑫)

∀𝑫 ∈ 𝑭,
𝑭 ∧ ̄𝑪 ⊨ 𝝈(𝑫)

∀𝑫 ∈ 𝑭,
𝑭 ∧ 𝑪 ⊨ 𝑫

∀𝑫 ∈ 𝑭,
𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪).𝑫

𝝈(𝑪) is a
tautology

𝑭 ∧ ̄𝑪 ⊨ 𝝈(𝑪) 𝑭 ∧ 𝑪 ⊨ 𝑪

𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪). 𝑪𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪). 𝑭 ∧ 𝑪

∇ distributes across ∧

put a pin on this

Interference is the same as deriving∇(𝝈 ∶− ̄𝑪).𝑫 for each𝑫 ∈ 𝑭 ∧ 𝑪

In the paper lots of details about mutation logic
+ a DAG-shaped proof system for interference!

8



Interference is inference (in mutation logic)

𝑰 ⊨ ∇(𝝈 ∶− 𝑸). 𝑭 iff 𝑰 ∘ (𝝈 ∶− 𝑸) ⊨ 𝑭

Theorem if𝑪 is an SR clause over 𝑭 upon 𝝈, then 𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪).𝑭 ∧ 𝑪

∀𝑫 ∈ 𝑭,
𝑪 ∨ 𝝈(𝑫) is RUP over 𝑭

∀𝑫 ∈ 𝑭,
𝑭 ⊨ 𝑪 ∨ 𝝈(𝑫)

∀𝑫 ∈ 𝑭,
𝑭 ∧ ̄𝑪 ⊨ 𝝈(𝑫)

∀𝑫 ∈ 𝑭,
𝑭 ∧ 𝑪 ⊨ 𝑫

∀𝑫 ∈ 𝑭,
𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪).𝑫

𝝈(𝑪) is a
tautology

𝑭 ∧ ̄𝑪 ⊨ 𝝈(𝑪) 𝑭 ∧ 𝑪 ⊨ 𝑪

𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪). 𝑪

𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪). 𝑭 ∧ 𝑪

∇ distributes across ∧

put a pin on this

Interference is the same as deriving∇(𝝈 ∶− ̄𝑪).𝑫 for each𝑫 ∈ 𝑭 ∧ 𝑪

In the paper lots of details about mutation logic
+ a DAG-shaped proof system for interference!

8



Interference is inference (in mutation logic)

𝑰 ⊨ ∇(𝝈 ∶− 𝑸). 𝑭 iff 𝑰 ∘ (𝝈 ∶− 𝑸) ⊨ 𝑭

Theorem if𝑪 is an SR clause over 𝑭 upon 𝝈, then 𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪).𝑭 ∧ 𝑪

∀𝑫 ∈ 𝑭,
𝑪 ∨ 𝝈(𝑫) is RUP over 𝑭

∀𝑫 ∈ 𝑭,
𝑭 ⊨ 𝑪 ∨ 𝝈(𝑫)

∀𝑫 ∈ 𝑭,
𝑭 ∧ ̄𝑪 ⊨ 𝝈(𝑫)

∀𝑫 ∈ 𝑭,
𝑭 ∧ 𝑪 ⊨ 𝑫

∀𝑫 ∈ 𝑭,
𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪).𝑫

𝝈(𝑪) is a
tautology

𝑭 ∧ ̄𝑪 ⊨ 𝝈(𝑪) 𝑭 ∧ 𝑪 ⊨ 𝑪

𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪). 𝑪𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪). 𝑭 ∧ 𝑪

∇ distributes across ∧

put a pin on this

Interference is the same as deriving∇(𝝈 ∶− ̄𝑪).𝑫 for each𝑫 ∈ 𝑭 ∧ 𝑪

In the paper lots of details about mutation logic
+ a DAG-shaped proof system for interference!

8



Interference is inference (in mutation logic)

𝑰 ⊨ ∇(𝝈 ∶− 𝑸). 𝑭 iff 𝑰 ∘ (𝝈 ∶− 𝑸) ⊨ 𝑭

Theorem if𝑪 is an SR clause over 𝑭 upon 𝝈, then 𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪).𝑭 ∧ 𝑪

∀𝑫 ∈ 𝑭,
𝑪 ∨ 𝝈(𝑫) is RUP over 𝑭

∀𝑫 ∈ 𝑭,
𝑭 ⊨ 𝑪 ∨ 𝝈(𝑫)

∀𝑫 ∈ 𝑭,
𝑭 ∧ ̄𝑪 ⊨ 𝝈(𝑫)

∀𝑫 ∈ 𝑭,
𝑭 ∧ 𝑪 ⊨ 𝑫

∀𝑫 ∈ 𝑭,
𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪).𝑫

𝝈(𝑪) is a
tautology

𝑭 ∧ ̄𝑪 ⊨ 𝝈(𝑪) 𝑭 ∧ 𝑪 ⊨ 𝑪

𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪). 𝑪𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪). 𝑭 ∧ 𝑪

∇ distributes across ∧

put a pin on this

Interference is the same as deriving∇(𝝈 ∶− ̄𝑪).𝑫 for each𝑫 ∈ 𝑭 ∧ 𝑪

In the paper lots of details about mutation logic
+ a DAG-shaped proof system for interference!

8



Interference is inference (in mutation logic)

𝑰 ⊨ ∇(𝝈 ∶− 𝑸). 𝑭 iff 𝑰 ∘ (𝝈 ∶− 𝑸) ⊨ 𝑭

Theorem if𝑪 is an SR clause over 𝑭 upon 𝝈, then 𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪).𝑭 ∧ 𝑪

∀𝑫 ∈ 𝑭,
𝑪 ∨ 𝝈(𝑫) is RUP over 𝑭

∀𝑫 ∈ 𝑭,
𝑭 ⊨ 𝑪 ∨ 𝝈(𝑫)

∀𝑫 ∈ 𝑭,
𝑭 ∧ ̄𝑪 ⊨ 𝝈(𝑫)

∀𝑫 ∈ 𝑭,
𝑭 ∧ 𝑪 ⊨ 𝑫

∀𝑫 ∈ 𝑭,
𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪).𝑫

𝝈(𝑪) is a
tautology

𝑭 ∧ ̄𝑪 ⊨ 𝝈(𝑪) 𝑭 ∧ 𝑪 ⊨ 𝑪

𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪). 𝑪𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪). 𝑭 ∧ 𝑪

∇ distributes across ∧

put a pin on this

Interference is the same as deriving∇(𝝈 ∶− ̄𝑪).𝑫 for each𝑫 ∈ 𝑭 ∧ 𝑪

In the paper lots of details about mutation logic
+ a DAG-shaped proof system for interference!

8



Interference is inference (in mutation logic)

𝑰 ⊨ ∇(𝝈 ∶− 𝑸). 𝑭 iff 𝑰 ∘ (𝝈 ∶− 𝑸) ⊨ 𝑭

Theorem if𝑪 is an SR clause over 𝑭 upon 𝝈, then 𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪).𝑭 ∧ 𝑪

∀𝑫 ∈ 𝑭,
𝑪 ∨ 𝝈(𝑫) is RUP over 𝑭

∀𝑫 ∈ 𝑭,
𝑭 ⊨ 𝑪 ∨ 𝝈(𝑫)

∀𝑫 ∈ 𝑭,
𝑭 ∧ ̄𝑪 ⊨ 𝝈(𝑫)

∀𝑫 ∈ 𝑭,
𝑭 ∧ 𝑪 ⊨ 𝑫

∀𝑫 ∈ 𝑭,
𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪).𝑫

𝝈(𝑪) is a
tautology

𝑭 ∧ ̄𝑪 ⊨ 𝝈(𝑪) 𝑭 ∧ 𝑪 ⊨ 𝑪

𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪). 𝑪𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪). 𝑭 ∧ 𝑪

∇ distributes across ∧

put a pin on this

Interference is the same as deriving∇(𝝈 ∶− ̄𝑪).𝑫 for each𝑫 ∈ 𝑭 ∧ 𝑪

In the paper lots of details about mutation logic
+ a DAG-shaped proof system for interference!

8



I brought you some souvenirs frommutation world

Theorem if𝑪 is an SR clause over 𝑭 upon 𝝈, then 𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪).𝑭 ∧ 𝑪

∀𝑫 ∈ 𝑭,
𝑪 ∨ 𝝈(𝑫) is RUP over 𝑭

∀𝑫 ∈ 𝑭,
𝑭 ⊨ 𝑪 ∨ 𝝈(𝑫)

∀𝑫 ∈ 𝑭,
𝑭 ∧ ̄𝑪 ⊨ 𝝈(𝑫)

∀𝑫 ∈ 𝑭,
𝑭 ∧ 𝑪 ⊨ 𝑫

∀𝑫 ∈ 𝑭,
𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪).𝑫

𝝈(𝑪) is a
tautology

𝑪 ∨ 𝝈(𝑪) is RUP
over 𝑭

𝑭 ⊨ 𝑪 ∨ 𝝈(𝑪)

𝑭 ∧ ̄𝑪 ⊨ 𝝈(𝑪) 𝑭 ∧ 𝑪 ⊨ 𝑪

𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪). 𝑪𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪). 𝑭 ∧ 𝑪

𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪). 𝑭 \𝜟 ∧ 𝑪

∇ distributes across ∧

A clause𝑪 is a weak substitution redundancy (WSR) clause upon 𝝈 over 𝑭
modulo 𝜟 if, for all clauses𝑫 ∈ 𝑭 \𝜟 ∧ 𝑪, the clause𝑪 ∨ 𝝈(𝑫) is a RUP clause
over 𝑭.

Theorem if𝑪 is a WSR clause over 𝑭modulo 𝜟 upon 𝝈, then
𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪).𝑭 \ 𝜟 ∧ 𝑪

9



I brought you some souvenirs frommutation world

Theorem if𝑪 is an SR clause over 𝑭 upon 𝝈, then 𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪).𝑭 ∧ 𝑪

∀𝑫 ∈ 𝑭,
𝑪 ∨ 𝝈(𝑫) is RUP over 𝑭

∀𝑫 ∈ 𝑭,
𝑭 ⊨ 𝑪 ∨ 𝝈(𝑫)

∀𝑫 ∈ 𝑭,
𝑭 ∧ ̄𝑪 ⊨ 𝝈(𝑫)

∀𝑫 ∈ 𝑭,
𝑭 ∧ 𝑪 ⊨ 𝑫

∀𝑫 ∈ 𝑭,
𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪).𝑫

𝝈(𝑪) is a
tautology

𝑪 ∨ 𝝈(𝑪) is RUP
over 𝑭

𝑭 ⊨ 𝑪 ∨ 𝝈(𝑪)

𝑭 ∧ ̄𝑪 ⊨ 𝝈(𝑪) 𝑭 ∧ 𝑪 ⊨ 𝑪

𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪). 𝑪𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪). 𝑭 ∧ 𝑪

𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪). 𝑭 \𝜟 ∧ 𝑪

∇ distributes across ∧

A clause𝑪 is a weak substitution redundancy (WSR) clause upon 𝝈 over 𝑭
modulo 𝜟 if, for all clauses𝑫 ∈ 𝑭 \𝜟 ∧ 𝑪, the clause𝑪 ∨ 𝝈(𝑫) is a RUP clause
over 𝑭.

Theorem if𝑪 is a WSR clause over 𝑭modulo 𝜟 upon 𝝈, then
𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪).𝑭 \ 𝜟 ∧ 𝑪

9



I brought you some souvenirs frommutation world

Theorem if𝑪 is an SR clause over 𝑭 upon 𝝈, then 𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪).𝑭 ∧ 𝑪

∀𝑫 ∈ 𝑭,
𝑪 ∨ 𝝈(𝑫) is RUP over 𝑭

∀𝑫 ∈ 𝑭,
𝑭 ⊨ 𝑪 ∨ 𝝈(𝑫)

∀𝑫 ∈ 𝑭,
𝑭 ∧ ̄𝑪 ⊨ 𝝈(𝑫)

∀𝑫 ∈ 𝑭,
𝑭 ∧ 𝑪 ⊨ 𝑫

∀𝑫 ∈ 𝑭,
𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪).𝑫

𝝈(𝑪) is a
tautology

𝑪 ∨ 𝝈(𝑪) is RUP
over 𝑭

𝑭 ⊨ 𝑪 ∨ 𝝈(𝑪)

𝑭 ∧ ̄𝑪 ⊨ 𝝈(𝑪) 𝑭 ∧ 𝑪 ⊨ 𝑪

𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪). 𝑪𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪). 𝑭 ∧ 𝑪

𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪). 𝑭 \𝜟 ∧ 𝑪

∇ distributes across ∧

A clause𝑪 is a weak substitution redundancy (WSR) clause upon 𝝈 over 𝑭
modulo 𝜟 if, for all clauses𝑫 ∈ 𝑭 \𝜟 ∧ 𝑪, the clause𝑪 ∨ 𝝈(𝑫) is a RUP clause
over 𝑭.

Theorem if𝑪 is a WSR clause over 𝑭modulo 𝜟 upon 𝝈, then
𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪).𝑭 \ 𝜟 ∧ 𝑪

9



I brought you some souvenirs frommutation world

Theorem if𝑪 is an SR clause over 𝑭 upon 𝝈, then 𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪).𝑭 ∧ 𝑪

∀𝑫 ∈ 𝑭,
𝑪 ∨ 𝝈(𝑫) is RUP over 𝑭

∀𝑫 ∈ 𝑭,
𝑭 ⊨ 𝑪 ∨ 𝝈(𝑫)

∀𝑫 ∈ 𝑭,
𝑭 ∧ ̄𝑪 ⊨ 𝝈(𝑫)

∀𝑫 ∈ 𝑭,
𝑭 ∧ 𝑪 ⊨ 𝑫

∀𝑫 ∈ 𝑭,
𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪).𝑫

𝝈(𝑪) is a
tautology

𝑪 ∨ 𝝈(𝑪) is RUP
over 𝑭

𝑭 ⊨ 𝑪 ∨ 𝝈(𝑪)

𝑭 ∧ ̄𝑪 ⊨ 𝝈(𝑪) 𝑭 ∧ 𝑪 ⊨ 𝑪

𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪). 𝑪𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪). 𝑭 ∧ 𝑪

𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪). 𝑭 \𝜟 ∧ 𝑪

∇ distributes across ∧

A clause𝑪 is a weak substitution redundancy (WSR) clause upon 𝝈 over 𝑭
modulo 𝜟 if, for all clauses𝑫 ∈ 𝑭 \𝜟 ∧ 𝑪, the clause𝑪 ∨ 𝝈(𝑫) is a RUP clause
over 𝑭.

Theorem if𝑪 is a WSR clause over 𝑭modulo 𝜟 upon 𝝈, then
𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪).𝑭 \ 𝜟 ∧ 𝑪

9



I brought you some souvenirs frommutation world

Theorem if𝑪 is an SR clause over 𝑭 upon 𝝈, then 𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪).𝑭 ∧ 𝑪

∀𝑫 ∈ 𝑭 \𝜟,
𝑪 ∨ 𝝈(𝑫) is RUP over 𝑭

∀𝑫 ∈ 𝑭 \𝜟,
𝑭 ⊨ 𝑪 ∨ 𝝈(𝑫)

∀𝑫 ∈ 𝑭 \𝜟,
𝑭 ∧ ̄𝑪 ⊨ 𝝈(𝑫)

∀𝑫 ∈ 𝑭 \𝜟,
𝑭 ∧ 𝑪 ⊨ 𝑫

∀𝑫 ∈ 𝑭 \𝜟,
𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪).𝑫

𝝈(𝑪) is a
tautology

𝑪 ∨ 𝝈(𝑪) is RUP
over 𝑭

𝑭 ⊨ 𝑪 ∨ 𝝈(𝑪)

𝑭 ∧ ̄𝑪 ⊨ 𝝈(𝑪) 𝑭 ∧ 𝑪 ⊨ 𝑪

𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪). 𝑪𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪). 𝑭 ∧ 𝑪

𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪). 𝑭 \𝜟 ∧ 𝑪

∇ distributes across ∧

A clause𝑪 is a weak substitution redundancy (WSR) clause upon 𝝈 over 𝑭
modulo 𝜟 if, for all clauses𝑫 ∈ 𝑭 \𝜟 ∧ 𝑪, the clause𝑪 ∨ 𝝈(𝑫) is a RUP clause
over 𝑭.

Theorem if𝑪 is a WSR clause over 𝑭modulo 𝜟 upon 𝝈, then
𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪).𝑭 \ 𝜟 ∧ 𝑪

9



I brought you some souvenirs frommutation world

Theorem if𝑪 is an SR clause over 𝑭 upon 𝝈, then 𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪).𝑭 ∧ 𝑪

∀𝑫 ∈ 𝑭 \𝜟,
𝑪 ∨ 𝝈(𝑫) is RUP over 𝑭

∀𝑫 ∈ 𝑭 \𝜟,
𝑭 ⊨ 𝑪 ∨ 𝝈(𝑫)

∀𝑫 ∈ 𝑭 \𝜟,
𝑭 ∧ ̄𝑪 ⊨ 𝝈(𝑫)

∀𝑫 ∈ 𝑭 \𝜟,
𝑭 ∧ 𝑪 ⊨ 𝑫

∀𝑫 ∈ 𝑭 \𝜟,
𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪).𝑫

𝝈(𝑪) is a
tautology

𝑪 ∨ 𝝈(𝑪) is RUP
over 𝑭

𝑭 ⊨ 𝑪 ∨ 𝝈(𝑪)

𝑭 ∧ ̄𝑪 ⊨ 𝝈(𝑪) 𝑭 ∧ 𝑪 ⊨ 𝑪

𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪). 𝑪

𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪). 𝑭 ∧ 𝑪

𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪). 𝑭 \𝜟 ∧ 𝑪

∇ distributes across ∧

A clause𝑪 is a weak substitution redundancy (WSR) clause upon 𝝈 over 𝑭
modulo 𝜟 if, for all clauses𝑫 ∈ 𝑭 \𝜟 ∧ 𝑪, the clause𝑪 ∨ 𝝈(𝑫) is a RUP clause
over 𝑭.

Theorem if𝑪 is a WSR clause over 𝑭modulo 𝜟 upon 𝝈, then
𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪).𝑭 \ 𝜟 ∧ 𝑪

9



I brought you some souvenirs frommutation world

Theorem if𝑪 is an SR clause over 𝑭 upon 𝝈, then 𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪).𝑭 ∧ 𝑪

∀𝑫 ∈ 𝑭 \𝜟,
𝑪 ∨ 𝝈(𝑫) is RUP over 𝑭

∀𝑫 ∈ 𝑭 \𝜟,
𝑭 ⊨ 𝑪 ∨ 𝝈(𝑫)

∀𝑫 ∈ 𝑭 \𝜟,
𝑭 ∧ ̄𝑪 ⊨ 𝝈(𝑫)

∀𝑫 ∈ 𝑭 \𝜟,
𝑭 ∧ 𝑪 ⊨ 𝑫

∀𝑫 ∈ 𝑭 \𝜟,
𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪).𝑫

𝝈(𝑪) is a
tautology

𝑪 ∨ 𝝈(𝑪) is RUP
over 𝑭

𝑭 ⊨ 𝑪 ∨ 𝝈(𝑪)

𝑭 ∧ ̄𝑪 ⊨ 𝝈(𝑪) 𝑭 ∧ 𝑪 ⊨ 𝑪

𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪). 𝑪

𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪). 𝑭 ∧ 𝑪

𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪). 𝑭 \𝜟 ∧ 𝑪

∇ distributes across ∧

A clause𝑪 is a weak substitution redundancy (WSR) clause upon 𝝈 over 𝑭
modulo 𝜟 if, for all clauses𝑫 ∈ 𝑭 \𝜟 ∧ 𝑪, the clause𝑪 ∨ 𝝈(𝑫) is a RUP clause
over 𝑭.

Theorem if𝑪 is a WSR clause over 𝑭modulo 𝜟 upon 𝝈, then
𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪).𝑭 \ 𝜟 ∧ 𝑪

9



I brought you some souvenirs frommutation world

Theorem if𝑪 is an SR clause over 𝑭 upon 𝝈, then 𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪).𝑭 ∧ 𝑪

∀𝑫 ∈ 𝑭 \𝜟,
𝑪 ∨ 𝝈(𝑫) is RUP over 𝑭

∀𝑫 ∈ 𝑭 \𝜟,
𝑭 ⊨ 𝑪 ∨ 𝝈(𝑫)

∀𝑫 ∈ 𝑭 \𝜟,
𝑭 ∧ ̄𝑪 ⊨ 𝝈(𝑫)

∀𝑫 ∈ 𝑭 \𝜟,
𝑭 ∧ 𝑪 ⊨ 𝑫

∀𝑫 ∈ 𝑭 \𝜟,
𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪).𝑫

𝝈(𝑪) is a
tautology

𝑪 ∨ 𝝈(𝑪) is RUP
over 𝑭

𝑭 ⊨ 𝑪 ∨ 𝝈(𝑪)

𝑭 ∧ ̄𝑪 ⊨ 𝝈(𝑪) 𝑭 ∧ 𝑪 ⊨ 𝑪

𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪). 𝑪

𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪). 𝑭 ∧ 𝑪

𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪). 𝑭 \𝜟 ∧ 𝑪

∇ distributes across ∧

A clause𝑪 is a weak substitution redundancy (WSR) clause upon 𝝈 over 𝑭
modulo 𝜟 if, for all clauses𝑫 ∈ 𝑭 \𝜟 ∧ 𝑪, the clause𝑪 ∨ 𝝈(𝑫) is a RUP clause
over 𝑭.

Theorem if𝑪 is a WSR clause over 𝑭modulo 𝜟 upon 𝝈, then
𝑭 ⊨ ∇(𝝈 ∶− ̄𝑪).𝑭 \ 𝜟 ∧ 𝑪

9



Swapping pigeons, finally

The pigeonhole problem PHP(𝒏)

𝒑𝒊𝒓 pigeon 𝒊 is in hole 𝒓

𝒑𝒊𝟏 ∨⋯ ∨ 𝒑𝒊(𝒏−𝟏) for 𝟏 ≤ 𝒊 ≤ 𝒏
𝒑𝒊𝒓 ∨ 𝒑𝒋𝒓 for 𝟏 ≤ 𝒊 < 𝒋 ≤ 𝒏 and 𝟏 ≤ 𝒓 < 𝒏

Can we fit 𝒏 pigeons into 𝒏 − 𝟏 holes?

w.l.o.g. pigeon 𝟏 is not in hole 𝒏 − 𝟏•
otherwise swap pigeons 𝟏 and 𝒏

⋮
w.l.o.g. pigeon 𝒏 − 𝟏 is not in hole 𝒏 − 𝟏•
pigeon 𝟏 is in some hole 𝟏,… , 𝒏 − 𝟐•
⋮
pigeon 𝒏 − 𝟏 is in some hole 𝟏,… , 𝒏 − 𝟐•
solve PHP(𝒏 − 𝟏)•

introduce𝑪 = 𝒑𝟏(𝒏−𝟏) as SR clause upon 𝝈
𝝈 = {𝒑𝟏𝒓 ↦ 𝒑𝒏𝒓, 𝒑𝒏𝒓 ↦ 𝒑𝟏𝒓 ∶ 𝟏 ≤ 𝒓 < 𝒏}

𝑪 ∨ 𝝈(𝑫) is RUP for each clause𝑫!
but 𝝈(𝑪) is not a tautology...𝑪 ∨ 𝝈(𝑪) = 𝒑𝟏(𝒏−𝟏) ∨ 𝒑𝒏(𝒏−𝟏) is RUP!

... but it suffices that𝑪 ∨ 𝝈(𝑪) is a RUP

solved! (details in the paper)

10



Swapping pigeons, finally

The pigeonhole problem PHP(𝒏)

𝒑𝒊𝒓 pigeon 𝒊 is in hole 𝒓

𝒑𝒊𝟏 ∨⋯ ∨ 𝒑𝒊(𝒏−𝟏) for 𝟏 ≤ 𝒊 ≤ 𝒏
𝒑𝒊𝒓 ∨ 𝒑𝒋𝒓 for 𝟏 ≤ 𝒊 < 𝒋 ≤ 𝒏 and 𝟏 ≤ 𝒓 < 𝒏

Can we fit 𝒏 pigeons into 𝒏 − 𝟏 holes?

w.l.o.g. pigeon 𝟏 is not in hole 𝒏 − 𝟏•
otherwise swap pigeons 𝟏 and 𝒏

⋮
w.l.o.g. pigeon 𝒏 − 𝟏 is not in hole 𝒏 − 𝟏•
pigeon 𝟏 is in some hole 𝟏,… , 𝒏 − 𝟐•
⋮
pigeon 𝒏 − 𝟏 is in some hole 𝟏,… , 𝒏 − 𝟐•
solve PHP(𝒏 − 𝟏)•

introduce𝑪 = 𝒑𝟏(𝒏−𝟏) as SR clause upon 𝝈
𝝈 = {𝒑𝟏𝒓 ↦ 𝒑𝒏𝒓, 𝒑𝒏𝒓 ↦ 𝒑𝟏𝒓 ∶ 𝟏 ≤ 𝒓 < 𝒏}

𝑪 ∨ 𝝈(𝑫) is RUP for each clause𝑫!
but 𝝈(𝑪) is not a tautology...𝑪 ∨ 𝝈(𝑪) = 𝒑𝟏(𝒏−𝟏) ∨ 𝒑𝒏(𝒏−𝟏) is RUP!

... but it suffices that𝑪 ∨ 𝝈(𝑪) is a RUP

solved! (details in the paper)

10



Swapping pigeons, finally

The pigeonhole problem PHP(𝒏)

𝒑𝒊𝒓 pigeon 𝒊 is in hole 𝒓

𝒑𝒊𝟏 ∨⋯ ∨ 𝒑𝒊(𝒏−𝟏) for 𝟏 ≤ 𝒊 ≤ 𝒏
𝒑𝒊𝒓 ∨ 𝒑𝒋𝒓 for 𝟏 ≤ 𝒊 < 𝒋 ≤ 𝒏 and 𝟏 ≤ 𝒓 < 𝒏

Can we fit 𝒏 pigeons into 𝒏 − 𝟏 holes?

w.l.o.g. pigeon 𝟏 is not in hole 𝒏 − 𝟏•
otherwise swap pigeons 𝟏 and 𝒏

⋮
w.l.o.g. pigeon 𝒏 − 𝟏 is not in hole 𝒏 − 𝟏•
pigeon 𝟏 is in some hole 𝟏,… , 𝒏 − 𝟐•
⋮
pigeon 𝒏 − 𝟏 is in some hole 𝟏,… , 𝒏 − 𝟐•
solve PHP(𝒏 − 𝟏)•

introduce𝑪 = 𝒑𝟏(𝒏−𝟏) as SR clause upon 𝝈
𝝈 = {𝒑𝟏𝒓 ↦ 𝒑𝒏𝒓, 𝒑𝒏𝒓 ↦ 𝒑𝟏𝒓 ∶ 𝟏 ≤ 𝒓 < 𝒏}

𝑪 ∨ 𝝈(𝑫) is RUP for each clause𝑫!
but 𝝈(𝑪) is not a tautology...𝑪 ∨ 𝝈(𝑪) = 𝒑𝟏(𝒏−𝟏) ∨ 𝒑𝒏(𝒏−𝟏) is RUP!

... but it suffices that𝑪 ∨ 𝝈(𝑪) is a RUP

solved! (details in the paper)

10



Swapping pigeons, finally

The pigeonhole problem PHP(𝒏)

𝒑𝒊𝒓 pigeon 𝒊 is in hole 𝒓

𝒑𝒊𝟏 ∨⋯ ∨ 𝒑𝒊(𝒏−𝟏) for 𝟏 ≤ 𝒊 ≤ 𝒏
𝒑𝒊𝒓 ∨ 𝒑𝒋𝒓 for 𝟏 ≤ 𝒊 < 𝒋 ≤ 𝒏 and 𝟏 ≤ 𝒓 < 𝒏

Can we fit 𝒏 pigeons into 𝒏 − 𝟏 holes?

w.l.o.g. pigeon 𝟏 is not in hole 𝒏 − 𝟏•
otherwise swap pigeons 𝟏 and 𝒏

⋮
w.l.o.g. pigeon 𝒏 − 𝟏 is not in hole 𝒏 − 𝟏•
pigeon 𝟏 is in some hole 𝟏,… , 𝒏 − 𝟐•
⋮
pigeon 𝒏 − 𝟏 is in some hole 𝟏,… , 𝒏 − 𝟐•
solve PHP(𝒏 − 𝟏)•

introduce𝑪 = 𝒑𝟏(𝒏−𝟏) as SR clause upon 𝝈
𝝈 = {𝒑𝟏𝒓 ↦ 𝒑𝒏𝒓, 𝒑𝒏𝒓 ↦ 𝒑𝟏𝒓 ∶ 𝟏 ≤ 𝒓 < 𝒏}

𝑪 ∨ 𝝈(𝑫) is RUP for each clause𝑫!
but 𝝈(𝑪) is not a tautology...𝑪 ∨ 𝝈(𝑪) = 𝒑𝟏(𝒏−𝟏) ∨ 𝒑𝒏(𝒏−𝟏) is RUP!

... but it suffices that𝑪 ∨ 𝝈(𝑪) is a RUP

solved! (details in the paper)

10



Swapping pigeons, finally

The pigeonhole problem PHP(𝒏)

𝒑𝒊𝒓 pigeon 𝒊 is in hole 𝒓

𝒑𝒊𝟏 ∨⋯ ∨ 𝒑𝒊(𝒏−𝟏) for 𝟏 ≤ 𝒊 ≤ 𝒏
𝒑𝒊𝒓 ∨ 𝒑𝒋𝒓 for 𝟏 ≤ 𝒊 < 𝒋 ≤ 𝒏 and 𝟏 ≤ 𝒓 < 𝒏

Can we fit 𝒏 pigeons into 𝒏 − 𝟏 holes?

w.l.o.g. pigeon 𝟏 is not in hole 𝒏 − 𝟏•
otherwise swap pigeons 𝟏 and 𝒏

⋮
w.l.o.g. pigeon 𝒏 − 𝟏 is not in hole 𝒏 − 𝟏•
pigeon 𝟏 is in some hole 𝟏,… , 𝒏 − 𝟐•
⋮
pigeon 𝒏 − 𝟏 is in some hole 𝟏,… , 𝒏 − 𝟐•
solve PHP(𝒏 − 𝟏)•

introduce𝑪 = 𝒑𝟏(𝒏−𝟏) as SR clause upon 𝝈
𝝈 = {𝒑𝟏𝒓 ↦ 𝒑𝒏𝒓, 𝒑𝒏𝒓 ↦ 𝒑𝟏𝒓 ∶ 𝟏 ≤ 𝒓 < 𝒏}

𝑪 ∨ 𝝈(𝑫) is RUP for each clause𝑫!
but 𝝈(𝑪) is not a tautology...𝑪 ∨ 𝝈(𝑪) = 𝒑𝟏(𝒏−𝟏) ∨ 𝒑𝒏(𝒏−𝟏) is RUP!

... but it suffices that𝑪 ∨ 𝝈(𝑪) is a RUP

solved! (details in the paper)

10



Swapping pigeons, finally

The pigeonhole problem PHP(𝒏)

𝒑𝒊𝒓 pigeon 𝒊 is in hole 𝒓

𝒑𝒊𝟏 ∨⋯ ∨ 𝒑𝒊(𝒏−𝟏) for 𝟏 ≤ 𝒊 ≤ 𝒏
𝒑𝒊𝒓 ∨ 𝒑𝒋𝒓 for 𝟏 ≤ 𝒊 < 𝒋 ≤ 𝒏 and 𝟏 ≤ 𝒓 < 𝒏

Can we fit 𝒏 pigeons into 𝒏 − 𝟏 holes?

w.l.o.g. pigeon 𝟏 is not in hole 𝒏 − 𝟏•
otherwise swap pigeons 𝟏 and 𝒏

⋮
w.l.o.g. pigeon 𝒏 − 𝟏 is not in hole 𝒏 − 𝟏•
pigeon 𝟏 is in some hole 𝟏,… , 𝒏 − 𝟐•
⋮
pigeon 𝒏 − 𝟏 is in some hole 𝟏,… , 𝒏 − 𝟐•
solve PHP(𝒏 − 𝟏)•

introduce𝑪 = 𝒑𝟏(𝒏−𝟏) as SR clause upon 𝝈
𝝈 = {𝒑𝟏𝒓 ↦ 𝒑𝒏𝒓, 𝒑𝒏𝒓 ↦ 𝒑𝟏𝒓 ∶ 𝟏 ≤ 𝒓 < 𝒏}

𝑪 ∨ 𝝈(𝑫) is RUP for each clause𝑫!
but 𝝈(𝑪) is not a tautology...𝑪 ∨ 𝝈(𝑪) = 𝒑𝟏(𝒏−𝟏) ∨ 𝒑𝒏(𝒏−𝟏) is RUP!

... but it suffices that𝑪 ∨ 𝝈(𝑪) is a RUP

solved! (details in the paper)

10



Swapping pigeons, finally

The pigeonhole problem PHP(𝒏)

𝒑𝒊𝒓 pigeon 𝒊 is in hole 𝒓

𝒑𝒊𝟏 ∨⋯ ∨ 𝒑𝒊(𝒏−𝟏) for 𝟏 ≤ 𝒊 ≤ 𝒏
𝒑𝒊𝒓 ∨ 𝒑𝒋𝒓 for 𝟏 ≤ 𝒊 < 𝒋 ≤ 𝒏 and 𝟏 ≤ 𝒓 < 𝒏

Can we fit 𝒏 pigeons into 𝒏 − 𝟏 holes?

w.l.o.g. pigeon 𝟏 is not in hole 𝒏 − 𝟏•
otherwise swap pigeons 𝟏 and 𝒏

⋮
w.l.o.g. pigeon 𝒏 − 𝟏 is not in hole 𝒏 − 𝟏•
pigeon 𝟏 is in some hole 𝟏,… , 𝒏 − 𝟐•
⋮
pigeon 𝒏 − 𝟏 is in some hole 𝟏,… , 𝒏 − 𝟐•
solve PHP(𝒏 − 𝟏)•

introduce𝑪 = 𝒑𝟏(𝒏−𝟏) as SR clause upon 𝝈
𝝈 = {𝒑𝟏𝒓 ↦ 𝒑𝒏𝒓, 𝒑𝒏𝒓 ↦ 𝒑𝟏𝒓 ∶ 𝟏 ≤ 𝒓 < 𝒏}

𝑪 ∨ 𝝈(𝑫) is RUP for each clause𝑫!

but 𝝈(𝑪) is not a tautology...𝑪 ∨ 𝝈(𝑪) = 𝒑𝟏(𝒏−𝟏) ∨ 𝒑𝒏(𝒏−𝟏) is RUP!

... but it suffices that𝑪 ∨ 𝝈(𝑪) is a RUP

solved! (details in the paper)

10



Swapping pigeons, finally

The pigeonhole problem PHP(𝒏)

𝒑𝒊𝒓 pigeon 𝒊 is in hole 𝒓

𝒑𝒊𝟏 ∨⋯ ∨ 𝒑𝒊(𝒏−𝟏) for 𝟏 ≤ 𝒊 ≤ 𝒏
𝒑𝒊𝒓 ∨ 𝒑𝒋𝒓 for 𝟏 ≤ 𝒊 < 𝒋 ≤ 𝒏 and 𝟏 ≤ 𝒓 < 𝒏

Can we fit 𝒏 pigeons into 𝒏 − 𝟏 holes?

w.l.o.g. pigeon 𝟏 is not in hole 𝒏 − 𝟏•
otherwise swap pigeons 𝟏 and 𝒏

⋮
w.l.o.g. pigeon 𝒏 − 𝟏 is not in hole 𝒏 − 𝟏•
pigeon 𝟏 is in some hole 𝟏,… , 𝒏 − 𝟐•
⋮
pigeon 𝒏 − 𝟏 is in some hole 𝟏,… , 𝒏 − 𝟐•
solve PHP(𝒏 − 𝟏)•

introduce𝑪 = 𝒑𝟏(𝒏−𝟏) as SR clause upon 𝝈
𝝈 = {𝒑𝟏𝒓 ↦ 𝒑𝒏𝒓, 𝒑𝒏𝒓 ↦ 𝒑𝟏𝒓 ∶ 𝟏 ≤ 𝒓 < 𝒏}

𝑪 ∨ 𝝈(𝑫) is RUP for each clause𝑫!
but 𝝈(𝑪) is not a tautology...

𝑪 ∨ 𝝈(𝑪) = 𝒑𝟏(𝒏−𝟏) ∨ 𝒑𝒏(𝒏−𝟏) is RUP!

... but it suffices that𝑪 ∨ 𝝈(𝑪) is a RUP

solved! (details in the paper)

10



Swapping pigeons, finally

The pigeonhole problem PHP(𝒏)

𝒑𝒊𝒓 pigeon 𝒊 is in hole 𝒓

𝒑𝒊𝟏 ∨⋯ ∨ 𝒑𝒊(𝒏−𝟏) for 𝟏 ≤ 𝒊 ≤ 𝒏
𝒑𝒊𝒓 ∨ 𝒑𝒋𝒓 for 𝟏 ≤ 𝒊 < 𝒋 ≤ 𝒏 and 𝟏 ≤ 𝒓 < 𝒏

Can we fit 𝒏 pigeons into 𝒏 − 𝟏 holes?

w.l.o.g. pigeon 𝟏 is not in hole 𝒏 − 𝟏•
otherwise swap pigeons 𝟏 and 𝒏

⋮
w.l.o.g. pigeon 𝒏 − 𝟏 is not in hole 𝒏 − 𝟏•
pigeon 𝟏 is in some hole 𝟏,… , 𝒏 − 𝟐•
⋮
pigeon 𝒏 − 𝟏 is in some hole 𝟏,… , 𝒏 − 𝟐•
solve PHP(𝒏 − 𝟏)•

introduce𝑪 = 𝒑𝟏(𝒏−𝟏) as SR clause upon 𝝈
𝝈 = {𝒑𝟏𝒓 ↦ 𝒑𝒏𝒓, 𝒑𝒏𝒓 ↦ 𝒑𝟏𝒓 ∶ 𝟏 ≤ 𝒓 < 𝒏}

𝑪 ∨ 𝝈(𝑫) is RUP for each clause𝑫!
but 𝝈(𝑪) is not a tautology...

𝑪 ∨ 𝝈(𝑪) = 𝒑𝟏(𝒏−𝟏) ∨ 𝒑𝒏(𝒏−𝟏) is RUP!

... but it suffices that𝑪 ∨ 𝝈(𝑪) is a RUP

solved! (details in the paper)

10



Swapping pigeons, finally

The pigeonhole problem PHP(𝒏)

𝒑𝒊𝒓 pigeon 𝒊 is in hole 𝒓

𝒑𝒊𝟏 ∨⋯ ∨ 𝒑𝒊(𝒏−𝟏) for 𝟏 ≤ 𝒊 ≤ 𝒏
𝒑𝒊𝒓 ∨ 𝒑𝒋𝒓 for 𝟏 ≤ 𝒊 < 𝒋 ≤ 𝒏 and 𝟏 ≤ 𝒓 < 𝒏

Can we fit 𝒏 pigeons into 𝒏 − 𝟏 holes?

w.l.o.g. pigeon 𝟏 is not in hole 𝒏 − 𝟏•
otherwise swap pigeons 𝟏 and 𝒏

⋮
w.l.o.g. pigeon 𝒏 − 𝟏 is not in hole 𝒏 − 𝟏•
pigeon 𝟏 is in some hole 𝟏,… , 𝒏 − 𝟐•
⋮
pigeon 𝒏 − 𝟏 is in some hole 𝟏,… , 𝒏 − 𝟐•
solve PHP(𝒏 − 𝟏)•

introduce𝑪 = 𝒑𝟏(𝒏−𝟏) as WSR clause upon 𝝈
𝝈 = {𝒑𝟏𝒓 ↦ 𝒑𝒏𝒓, 𝒑𝒏𝒓 ↦ 𝒑𝟏𝒓 ∶ 𝟏 ≤ 𝒓 < 𝒏}

𝑪 ∨ 𝝈(𝑫) is RUP for each clause𝑫!
but 𝝈(𝑪) is not a tautology...

𝑪 ∨ 𝝈(𝑪) = 𝒑𝟏(𝒏−𝟏) ∨ 𝒑𝒏(𝒏−𝟏) is RUP!

... but it suffices that𝑪 ∨ 𝝈(𝑪) is a RUP

solved! (details in the paper)

10



Swapping pigeons, finally

The pigeonhole problem PHP(𝒏)

𝒑𝒊𝒓 pigeon 𝒊 is in hole 𝒓

𝒑𝒊𝟏 ∨⋯ ∨ 𝒑𝒊(𝒏−𝟏) for 𝟏 ≤ 𝒊 ≤ 𝒏
𝒑𝒊𝒓 ∨ 𝒑𝒋𝒓 for 𝟏 ≤ 𝒊 < 𝒋 ≤ 𝒏 and 𝟏 ≤ 𝒓 < 𝒏

Can we fit 𝒏 pigeons into 𝒏 − 𝟏 holes?

w.l.o.g. pigeon 𝟏 is not in hole 𝒏 − 𝟏•
otherwise swap pigeons 𝟏 and 𝒏

⋮
w.l.o.g. pigeon 𝒏 − 𝟏 is not in hole 𝒏 − 𝟏•
pigeon 𝟏 is in some hole 𝟏,… , 𝒏 − 𝟐•
⋮
pigeon 𝒏 − 𝟏 is in some hole 𝟏,… , 𝒏 − 𝟐•
solve PHP(𝒏 − 𝟏)•

introduce𝑪 = 𝒑𝟏(𝒏−𝟏) as WSR clause upon 𝝈
𝝈 = {𝒑𝟏𝒓 ↦ 𝒑𝒏𝒓, 𝒑𝒏𝒓 ↦ 𝒑𝟏𝒓 ∶ 𝟏 ≤ 𝒓 < 𝒏}

𝑪 ∨ 𝝈(𝑫) is RUP for each clause𝑫!

but 𝝈(𝑪) is not a tautology...

𝑪 ∨ 𝝈(𝑪) = 𝒑𝟏(𝒏−𝟏) ∨ 𝒑𝒏(𝒏−𝟏) is RUP!

... but it suffices that𝑪 ∨ 𝝈(𝑪) is a RUP

solved! (details in the paper)

10



Swapping pigeons, finally

The pigeonhole problem PHP(𝒏)

𝒑𝒊𝒓 pigeon 𝒊 is in hole 𝒓

𝒑𝒊𝟏 ∨⋯ ∨ 𝒑𝒊(𝒏−𝟏) for 𝟏 ≤ 𝒊 ≤ 𝒏
𝒑𝒊𝒓 ∨ 𝒑𝒋𝒓 for 𝟏 ≤ 𝒊 < 𝒋 ≤ 𝒏 and 𝟏 ≤ 𝒓 < 𝒏

Can we fit 𝒏 pigeons into 𝒏 − 𝟏 holes?

w.l.o.g. pigeon 𝟏 is not in hole 𝒏 − 𝟏•
otherwise swap pigeons 𝟏 and 𝒏

⋮
w.l.o.g. pigeon 𝒏 − 𝟏 is not in hole 𝒏 − 𝟏•
pigeon 𝟏 is in some hole 𝟏,… , 𝒏 − 𝟐•
⋮
pigeon 𝒏 − 𝟏 is in some hole 𝟏,… , 𝒏 − 𝟐•
solve PHP(𝒏 − 𝟏)•

introduce𝑪 = 𝒑𝟏(𝒏−𝟏) as WSR clause upon 𝝈
𝝈 = {𝒑𝟏𝒓 ↦ 𝒑𝒏𝒓, 𝒑𝒏𝒓 ↦ 𝒑𝟏𝒓 ∶ 𝟏 ≤ 𝒓 < 𝒏}

𝑪 ∨ 𝝈(𝑫) is RUP for each clause𝑫!

but 𝝈(𝑪) is not a tautology...

𝑪 ∨ 𝝈(𝑪) = 𝒑𝟏(𝒏−𝟏) ∨ 𝒑𝒏(𝒏−𝟏) is RUP!

... but it suffices that𝑪 ∨ 𝝈(𝑪) is a RUP

solved! (details in the paper)

10



Interference-free lemmas, finally

SAT
solver

learn𝑪
𝑭 ⊨ 𝑪 delete𝑪

derive as RUP
(a form of iterated resolution + subsumption)

log deletion

insert𝑪
𝑭 ≡sat 𝑭 ∧ 𝑪

insert proof fragment

Proof generation for inprocessing

if 𝑭| ̄𝑪 ⊨ 𝝈(𝑭)

i: 𝑪 [𝝈]

mod𝑳𝟏, 𝑳𝟐, 𝑳𝟑

i: 𝑳𝟑

i: 𝑳𝟐

i: 𝑳𝟏

d: 𝑳𝟑
d: 𝑳𝟐
d: 𝑳𝟏

𝑪 is an SR clause if 𝝈(𝑪) is a tautology and
all clauses in 𝝈(𝑭) are RUP clauses over 𝑭| ̄𝑪

𝑪 is a WSR clausemodulo 𝜟 if
𝑪 ∨ 𝝈(𝑫) is a RUP for each𝑫 ∈ 𝑭 \𝜟 ∧ 𝑪

all clauses in 𝝈(𝑭)
are RUP clauses

over 𝑭 ∧ 𝑳𝟏 ∧ 𝑳𝟐 ∧ 𝑳𝟑

we also need 𝝈(𝑳𝟏), 𝝈(𝑳𝟐), 𝝈(𝑳𝟑) to be RUPs over 𝑭 ∧ 𝑳𝟏 ∧ 𝑳𝟐 ∧ 𝑳𝟑
... whichmight need extra lemmas themselves...

... and so on...

solved! (details in the paper)

11



Interference-free lemmas, finally

SAT
solver

learn𝑪
𝑭 ⊨ 𝑪 delete𝑪

derive as RUP
(a form of iterated resolution + subsumption)

log deletion

insert𝑪
𝑭 ≡sat 𝑭 ∧ 𝑪

insert proof fragment

Proof generation for inprocessing

if 𝑭| ̄𝑪 ⊨ 𝝈(𝑭)

i: 𝑪 [𝝈]

mod𝑳𝟏, 𝑳𝟐, 𝑳𝟑

i: 𝑳𝟑

i: 𝑳𝟐

i: 𝑳𝟏

d: 𝑳𝟑
d: 𝑳𝟐
d: 𝑳𝟏

𝑪 is an SR clause if 𝝈(𝑪) is a tautology and
all clauses in 𝝈(𝑭) are RUP clauses over 𝑭| ̄𝑪

𝑪 is a WSR clausemodulo 𝜟 if
𝑪 ∨ 𝝈(𝑫) is a RUP for each𝑫 ∈ 𝑭 \𝜟 ∧ 𝑪

all clauses in 𝝈(𝑭)
are RUP clauses

over 𝑭 ∧ 𝑳𝟏 ∧ 𝑳𝟐 ∧ 𝑳𝟑

we also need 𝝈(𝑳𝟏), 𝝈(𝑳𝟐), 𝝈(𝑳𝟑) to be RUPs over 𝑭 ∧ 𝑳𝟏 ∧ 𝑳𝟐 ∧ 𝑳𝟑
... whichmight need extra lemmas themselves...

... and so on...

solved! (details in the paper)

11



Interference-free lemmas, finally

SAT
solver

learn𝑪
𝑭 ⊨ 𝑪 delete𝑪

derive as RUP
(a form of iterated resolution + subsumption)

log deletion

insert𝑪
𝑭 ≡sat 𝑭 ∧ 𝑪

insert proof fragment

Proof generation for inprocessing

if 𝑭| ̄𝑪 ⊨ 𝝈(𝑭)

i: 𝑪 [𝝈] mod𝑳𝟏, 𝑳𝟐, 𝑳𝟑

i: 𝑳𝟑

i: 𝑳𝟐

i: 𝑳𝟏

d: 𝑳𝟑
d: 𝑳𝟐
d: 𝑳𝟏

𝑪 is an SR clause if 𝝈(𝑪) is a tautology and
all clauses in 𝝈(𝑭) are RUP clauses over 𝑭| ̄𝑪

𝑪 is a WSR clausemodulo 𝜟 if
𝑪 ∨ 𝝈(𝑫) is a RUP for each𝑫 ∈ 𝑭 \𝜟 ∧ 𝑪

all clauses in 𝝈(𝑭)
are RUP clauses

over 𝑭 ∧ 𝑳𝟏 ∧ 𝑳𝟐 ∧ 𝑳𝟑

we also need 𝝈(𝑳𝟏), 𝝈(𝑳𝟐), 𝝈(𝑳𝟑) to be RUPs over 𝑭 ∧ 𝑳𝟏 ∧ 𝑳𝟐 ∧ 𝑳𝟑
... whichmight need extra lemmas themselves...

... and so on...

solved! (details in the paper)

11



Interference-free lemmas, finally

SAT
solver

learn𝑪
𝑭 ⊨ 𝑪 delete𝑪

derive as RUP
(a form of iterated resolution + subsumption)

log deletion

insert𝑪
𝑭 ≡sat 𝑭 ∧ 𝑪

insert proof fragment

Proof generation for inprocessing

if 𝑭| ̄𝑪 ⊨ 𝝈(𝑭)

i: 𝑪 [𝝈] mod𝑳𝟏, 𝑳𝟐, 𝑳𝟑

i: 𝑳𝟑

i: 𝑳𝟐

i: 𝑳𝟏

d: 𝑳𝟑
d: 𝑳𝟐
d: 𝑳𝟏

𝑪 is an SR clause if 𝝈(𝑪) is a tautology and
all clauses in 𝝈(𝑭) are RUP clauses over 𝑭| ̄𝑪

𝑪 is a WSR clausemodulo 𝜟 if
𝑪 ∨ 𝝈(𝑫) is a RUP for each𝑫 ∈ 𝑭 \𝜟 ∧ 𝑪

all clauses in 𝝈(𝑭)
are RUP clauses

over 𝑭 ∧ 𝑳𝟏 ∧ 𝑳𝟐 ∧ 𝑳𝟑

we also need 𝝈(𝑳𝟏), 𝝈(𝑳𝟐), 𝝈(𝑳𝟑) to be RUPs over 𝑭 ∧ 𝑳𝟏 ∧ 𝑳𝟐 ∧ 𝑳𝟑
... whichmight need extra lemmas themselves...

... and so on...

solved! (details in the paper)

11



Cores and trimming under interference, finally

Generating an unsatisfiable core from a proof

mark the empty clause and proceed backwards
if𝑪 is not marked, skip it•
if𝑪 is an input clause, it is in the core•
if𝑪 is a RUP clause, mark its antecedents•
if𝑪 is an SR clause upon 𝝈...?•

marked

𝑴

newly
marked

𝜟𝟏

𝜟𝟐

𝜟𝟑

can we do better
than this fixpoint
computation?

𝑪 is a WSR over 𝑭 ∧ 𝜟𝟏
modulo 𝜟𝟏 upon 𝝈!

TL;DR just mark 𝜟𝟏

for eachmarked𝑫, 𝝈(𝑫) is a RUP clause over 𝑭| ̄𝑪 ⇒ mark their antecedents

solved! (details in the paper)

12



Cores and trimming under interference, finally

Generating an unsatisfiable core from a proof

mark the empty clause and proceed backwards
if𝑪 is not marked, skip it•
if𝑪 is an input clause, it is in the core•
if𝑪 is a RUP clause, mark its antecedents•
if𝑪 is an SR clause upon 𝝈...?•

marked

𝑴

newly
marked

𝜟𝟏

𝜟𝟐

𝜟𝟑

can we do better
than this fixpoint
computation?

𝑪 is a WSR over 𝑭 ∧ 𝜟𝟏
modulo 𝜟𝟏 upon 𝝈!

TL;DR just mark 𝜟𝟏

for eachmarked𝑫, 𝝈(𝑫) is a RUP clause over 𝑭| ̄𝑪 ⇒ mark their antecedents

solved! (details in the paper)

12



Cores and trimming under interference, finally

Generating an unsatisfiable core from a proof

mark the empty clause and proceed backwards
if𝑪 is not marked, skip it•
if𝑪 is an input clause, it is in the core•
if𝑪 is a RUP clause, mark its antecedents•
if𝑪 is an SR clause upon 𝝈...?•

marked

𝑴

newly
marked

𝜟𝟏

𝜟𝟐

𝜟𝟑

can we do better
than this fixpoint
computation?

𝑪 is a WSR over 𝑭 ∧ 𝜟𝟏
modulo 𝜟𝟏 upon 𝝈!

TL;DR just mark 𝜟𝟏

for eachmarked𝑫, 𝝈(𝑫) is a RUP clause over 𝑭| ̄𝑪 ⇒ mark their antecedents

solved! (details in the paper)

12



Cores and trimming under interference, finally

Generating an unsatisfiable core from a proof

mark the empty clause and proceed backwards
if𝑪 is not marked, skip it•
if𝑪 is an input clause, it is in the core•
if𝑪 is a RUP clause, mark its antecedents•
if𝑪 is an SR clause upon 𝝈...?•

marked

𝑴

newly
marked

𝜟𝟏

𝜟𝟐

𝜟𝟑

can we do better
than this fixpoint
computation?

𝑪 is a WSR over 𝑭 ∧ 𝜟𝟏
modulo 𝜟𝟏 upon 𝝈!

TL;DR just mark 𝜟𝟏

for eachmarked𝑫, 𝝈(𝑫) is a RUP clause over 𝑭| ̄𝑪 ⇒ mark their antecedents

solved! (details in the paper)

12



Cores and trimming under interference, finally

Generating an unsatisfiable core from a proof

mark the empty clause and proceed backwards
if𝑪 is not marked, skip it•
if𝑪 is an input clause, it is in the core•
if𝑪 is a RUP clause, mark its antecedents•
if𝑪 is an SR clause upon 𝝈...?•

marked

𝑴

newly
marked

𝜟𝟏

𝜟𝟐

𝜟𝟑

can we do better
than this fixpoint
computation?

𝑪 is a WSR over 𝑭 ∧ 𝜟𝟏
modulo 𝜟𝟏 upon 𝝈!

TL;DR just mark 𝜟𝟏

for eachmarked𝑫, 𝝈(𝑫) is a RUP clause over 𝑭| ̄𝑪 ⇒ mark their antecedents

solved! (details in the paper)

12



Takeaways and future directions

Existing interference rules are unnecessarily restrictive, and those restrictions
can be removed at negligible cost.

Doing so enables shorter, intuitive proofs.

Interference-free lemmas are possible for free.

There is no need to perform fixpoint core generation, even if not using WSR.

There is a clear, mutation-based semantics for interference.

Future directions

Developing a proof format and proof checkerwith state-of-the-art efficiency.

Can we improve on SDCL-like methods with WSR?

Can we use themutation framework for QBF interference?

... andmaybe, potentially, perhaps, possibly, SMT/FOL?

13



Takeaways and future directions

Existing interference rules are unnecessarily restrictive, and those restrictions
can be removed at negligible cost.

Doing so enables shorter, intuitive proofs.

Interference-free lemmas are possible for free.

There is no need to perform fixpoint core generation, even if not using WSR.

There is a clear, mutation-based semantics for interference.

Future directions

Developing a proof format and proof checkerwith state-of-the-art efficiency.

Can we improve on SDCL-like methods with WSR?

Can we use themutation framework for QBF interference?

... andmaybe, potentially, perhaps, possibly, SMT/FOL?

13



Takeaways and future directions

Existing interference rules are unnecessarily restrictive, and those restrictions
can be removed at negligible cost.

Doing so enables shorter, intuitive proofs.

Interference-free lemmas are possible for free.

There is no need to perform fixpoint core generation, even if not using WSR.

There is a clear, mutation-based semantics for interference.

Future directions

Developing a proof format and proof checkerwith state-of-the-art efficiency.

Can we improve on SDCL-like methods with WSR?

Can we use themutation framework for QBF interference?

... andmaybe, potentially, perhaps, possibly, SMT/FOL?

13



Takeaways and future directions

Existing interference rules are unnecessarily restrictive, and those restrictions
can be removed at negligible cost.

Doing so enables shorter, intuitive proofs.

Interference-free lemmas are possible for free.

There is no need to perform fixpoint core generation, even if not using WSR.

There is a clear, mutation-based semantics for interference.

Future directions

Developing a proof format and proof checkerwith state-of-the-art efficiency.

Can we improve on SDCL-like methods with WSR?

Can we use themutation framework for QBF interference?

... andmaybe, potentially, perhaps, possibly, SMT/FOL?

13



Takeaways and future directions

Existing interference rules are unnecessarily restrictive, and those restrictions
can be removed at negligible cost.

Doing so enables shorter, intuitive proofs.

Interference-free lemmas are possible for free.

There is no need to perform fixpoint core generation, even if not using WSR.

There is a clear, mutation-based semantics for interference.

Future directions

Developing a proof format and proof checkerwith state-of-the-art efficiency.

Can we improve on SDCL-like methods with WSR?

Can we use themutation framework for QBF interference?

... andmaybe, potentially, perhaps, possibly, SMT/FOL?

13



Takeaways and future directions

Existing interference rules are unnecessarily restrictive, and those restrictions
can be removed at negligible cost.

Doing so enables shorter, intuitive proofs.

Interference-free lemmas are possible for free.

There is no need to perform fixpoint core generation, even if not using WSR.

There is a clear, mutation-based semantics for interference.

Future directions
Developing a proof format and proof checkerwith state-of-the-art efficiency.

Can we improve on SDCL-like methods with WSR?

Can we use themutation framework for QBF interference?

... andmaybe, potentially, perhaps, possibly, SMT/FOL?

13



Takeaways and future directions

Existing interference rules are unnecessarily restrictive, and those restrictions
can be removed at negligible cost.

Doing so enables shorter, intuitive proofs.

Interference-free lemmas are possible for free.

There is no need to perform fixpoint core generation, even if not using WSR.

There is a clear, mutation-based semantics for interference.

Future directions
Developing a proof format and proof checkerwith state-of-the-art efficiency.

Can we improve on SDCL-like methods with WSR?

Can we use themutation framework for QBF interference?

... andmaybe, potentially, perhaps, possibly, SMT/FOL?

13



Takeaways and future directions

Existing interference rules are unnecessarily restrictive, and those restrictions
can be removed at negligible cost.

Doing so enables shorter, intuitive proofs.

Interference-free lemmas are possible for free.

There is no need to perform fixpoint core generation, even if not using WSR.

There is a clear, mutation-based semantics for interference.

Future directions
Developing a proof format and proof checkerwith state-of-the-art efficiency.

Can we improve on SDCL-like methods with WSR?

Can we use themutation framework for QBF interference?

... andmaybe, potentially, perhaps, possibly, SMT/FOL?

13



Takeaways and future directions

Existing interference rules are unnecessarily restrictive, and those restrictions
can be removed at negligible cost.

Doing so enables shorter, intuitive proofs.

Interference-free lemmas are possible for free.

There is no need to perform fixpoint core generation, even if not using WSR.

There is a clear, mutation-based semantics for interference.

Future directions
Developing a proof format and proof checkerwith state-of-the-art efficiency.

Can we improve on SDCL-like methods with WSR?

Can we use themutation framework for QBF interference?

... andmaybe, potentially, perhaps, possibly, SMT/FOL?

13


