
UpMax: User partitioning for MaxSAT

Pedro Orvalho 1, Vasco Manquinho 1 and Ruben Martins 2

1INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Portugal
2Carnegie Mellon University, PA, USA

SAT 2023, Alghero, Italy
July 8, 2023



Partitioning of MaxSAT Formulae

Hard: h1 : (v1 ∨ v2) h2 : (¬v2 ∨ v3) h3 : (¬v1 ∨ ¬v3) h4 : (v4 ∨ v5)
h5 : (¬v5 ∨ v6) h6 : (¬v4 ∨ ¬v6) h7 : (¬v3 ∨ ¬v6)

Soft: s1 : (¬v1) s2 : (¬v3) s3 : (¬v4) s4 : (¬v6)

• Instead of dealing with the whole
formula at once, some MaxSAT
algorithms try to split the formula
into partitions [Martins et al., 2012].

h1 h2

h3

h7 h5 h4

h6

s1 s2 s4 s3

1 / 45



Partitioning of MaxSAT Formulae

Hard: h1 : (v1 ∨ v2) h2 : (¬v2 ∨ v3) h3 : (¬v1 ∨ ¬v3) h4 : (v4 ∨ v5)
h5 : (¬v5 ∨ v6) h6 : (¬v4 ∨ ¬v6) h7 : (¬v3 ∨ ¬v6)

Soft: s1 : (¬v1) s2 : (¬v3) s3 : (¬v4) s4 : (¬v6)

• Instead of dealing with the whole
formula at once, some MaxSAT
algorithms try to split the formula
into partitions [Martins et al., 2012].

h1 h2

h3

h7 h5 h4

h6

s1 s2 s4 s3

2 / 45



Partitioning of MaxSAT Formulae

Hard: h1 : (v1 ∨ v2) h2 : (¬v2 ∨ v3) h3 : (¬v1 ∨ ¬v3) h4 : (v4 ∨ v5)
h5 : (¬v5 ∨ v6) h6 : (¬v4 ∨ ¬v6) h7 : (¬v3 ∨ ¬v6)

Soft: s1 : (¬v1) s2 : (¬v3) s3 : (¬v4) s4 : (¬v6)

• In particular, the partitioning focuses
on splitting the set of soft clauses
into disjoint sets.

h1 h2

h3

h7 h5 h4

h6

s1 s2 s4 s3

3 / 45



Partitioning of MaxSAT Formulae

Hard: h1 : (v1 ∨ v2) h2 : (¬v2 ∨ v3) h3 : (¬v1 ∨ ¬v3) h4 : (v4 ∨ v5)
h5 : (¬v5 ∨ v6) h6 : (¬v4 ∨ ¬v6) h7 : (¬v3 ∨ ¬v6)

Soft: s1 : (¬v1) s2 : (¬v3) s3 : (¬v4) s4 : (¬v6)

• quickly identify a minimal cost;
• easier to solve;
• faster convergence to the optimum.

h1 h2

h3

h7 h5 h4

h6

s1 s2 s4 s3

4 / 45



Partitioning of MaxSAT Formulae

There have been proposed several types of automatic partitioning methods, such as:

• Partitioning of soft clauses according to their weight [Ansotegui et al., 2012];

• Graph-based partitioning of partial MaxSAT formulae [Neves et al., 2015].

4 / 45



Partitioning of MaxSAT Formulae

There have been proposed several types of automatic partitioning methods, such as:

• Partitioning of soft clauses according to their weight [Ansotegui et al., 2012];

• Graph-based partitioning of partial MaxSAT formulae [Neves et al., 2015].

5 / 45



Partitioning of MaxSAT Formulae

Current Drawbacks
1. Partitioning methods are interconnected to the MaxSAT algorithms;

2. Difficult to define and test new partitioning methods with several MaxSAT
algorithms;

3. Graph representations may become too large;

4. The partitions might not capture the problem structure that is helpful for
MaxSAT solving.

5. The wcnf format does not support the users to provide a partitioning scheme.

5 / 45



Partitioning of MaxSAT Formulae

Current Drawbacks
1. Partitioning methods are interconnected to the MaxSAT algorithms;

2. Difficult to define and test new partitioning methods with several MaxSAT
algorithms;

3. Graph representations may become too large;

4. The partitions might not capture the problem structure that is helpful for
MaxSAT solving.

5. The wcnf format does not support the users to provide a partitioning scheme.

6 / 45



Partitioning of MaxSAT Formulae

Current Drawbacks
1. Partitioning methods are interconnected to the MaxSAT algorithms;

2. Difficult to define and test new partitioning methods with several MaxSAT
algorithms;

3. Graph representations may become too large;

4. The partitions might not capture the problem structure that is helpful for
MaxSAT solving.

5. The wcnf format does not support the users to provide a partitioning scheme.

7 / 45



Partitioning of MaxSAT Formulae

Current Drawbacks
1. Partitioning methods are interconnected to the MaxSAT algorithms;

2. Difficult to define and test new partitioning methods with several MaxSAT
algorithms;

3. Graph representations may become too large;

4. The partitions might not capture the problem structure that is helpful for
MaxSAT solving.

5. The wcnf format does not support the users to provide a partitioning scheme.

8 / 45



Partitioning of MaxSAT Formulae

Current Drawbacks
1. Partitioning methods are interconnected to the MaxSAT algorithms;

2. Difficult to define and test new partitioning methods with several MaxSAT
algorithms;

3. Graph representations may become too large;

4. The partitions might not capture the problem structure that is helpful for
MaxSAT solving.

5. The wcnf format does not support the users to provide a partitioning scheme.

9 / 45



UpMax

PWCNF

WCNF
OR

INPUT:

WCNF 
Partitioner

MaxSAT
Algorithmset of partitions

solution

Model

9 / 45



pwcnf format

• The pwcnf format starts with a header:
p pwcnf n_vars n_clauses topw n_part

• and each line in the body is of the form:
[part] [weight] [literals*] 0

9 / 45



pwcnf format

• The pwcnf format starts with a header:
p pwcnf n_vars n_clauses topw n_part

• and each line in the body is of the form:
[part] [weight] [literals*] 0

10 / 45



Use Cases

10 / 45



Use Case: Minimum Sum Coloring (MSC)

• MSC is a graph coloring problem.

• Requirements:

• Each vertex should be assigned exactly one color;

• Two adjacent vertices cannot be assigned the same color.

• Goal: minimize the number of different colors in the graph.

10 / 45



Use Case: Minimum Sum Coloring (MSC)

• MSC is a graph coloring problem.

• Requirements:

• Each vertex should be assigned exactly one color;

• Two adjacent vertices cannot be assigned the same color.

• Goal: minimize the number of different colors in the graph.

11 / 45



Use Case: Minimum Sum Coloring (MSC)

• MSC is a graph coloring problem.

• Requirements:

• Each vertex should be assigned exactly one color;

• Two adjacent vertices cannot be assigned the same color.

• Goal: minimize the number of different colors in the graph.

12 / 45



Use Case: Minimum Sum Coloring (MSC)

• MSC is a graph coloring problem.

• Requirements:

• Each vertex should be assigned exactly one color;

• Two adjacent vertices cannot be assigned the same color.

• Goal: minimize the number of different colors in the graph.

13 / 45



Use Case: Minimum Sum Coloring (MSC)

• MSC is a graph coloring problem.

• Requirements:

• Each vertex should be assigned exactly one color;

• Two adjacent vertices cannot be assigned the same color.

• Goal: minimize the number of different colors in the graph.

14 / 45



Use Case: Minimum Sum Coloring (MSC)

• X v
c is true if color c is assigned to vertex v .

• Goal (soft clauses): Maximize ¬X v
c (weight = c).

• More details on the encodings can be found on this paper’s extended
version [Orvalho et al., 2023].

14 / 45



Use Case: Minimum Sum Coloring (MSC)

• X v
c is true if color c is assigned to vertex v .

• Goal (soft clauses): Maximize ¬X v
c (weight = c).

• More details on the encodings can be found on this paper’s extended
version [Orvalho et al., 2023].

15 / 45



Use Case: Minimum Sum Coloring (MSC)

• X v
c is true if color c is assigned to vertex v .

• Goal (soft clauses): Maximize ¬X v
c (weight = c).

• More details on the encodings can be found on this paper’s extended
version [Orvalho et al., 2023].

16 / 45



Use Case: Minimum Sum Coloring (MSC)

Example
Given a graph G with 4 vertices, v1, . . . , v4, and 4 different colors available c1, . . . , c4.

When encoding the problem into pwcnf the user could provide either the following
VERTEX-based or COLOR-based partition schemes:

VERTEX-based

V1 V2 V3 V4

¬X c1v1

¬X c2v1

¬X c3v1

¬X c4v1

¬X c1v2

¬X c2v2

¬X c3v2

¬X c4v2

¬X c1v3

¬X c2v3

¬X c3v3

¬X c4v3

¬X c1v4

¬X c2v4

¬X c3v4

¬X c4v4

16 / 45



Use Case: Minimum Sum Coloring (MSC)

Example
Given a graph G with 4 vertices, v1, . . . , v4, and 4 different colors available c1, . . . , c4.

When encoding the problem into pwcnf the user could provide either the following
VERTEX-based or COLOR-based partition schemes:

VERTEX-based

V1 V2 V3 V4

¬X c1v1

¬X c2v1

¬X c3v1

¬X c4v1

¬X c1v2

¬X c2v2

¬X c3v2

¬X c4v2

¬X c1v3

¬X c2v3

¬X c3v3

¬X c4v3

¬X c1v4

¬X c2v4

¬X c3v4

¬X c4v4

17 / 45



Use Case: Minimum Sum Coloring (MSC)

Example
Given a graph G with 4 vertices, v1, . . . , v4, and 4 different colors available c1, . . . , c4.

When encoding the problem into pwcnf the user could provide either the following
VERTEX-based or COLOR-based partition schemes:

VERTEX-based

V1 V2 V3 V4

¬X c1v1

¬X c2v1

¬X c3v1

¬X c4v1

¬X c1v2

¬X c2v2

¬X c3v2

¬X c4v2

¬X c1v3

¬X c2v3

¬X c3v3

¬X c4v3

¬X c1v4

¬X c2v4

¬X c3v4

¬X c4v4

18 / 45



Use Case: Minimum Sum Coloring (MSC)

Example
Given a graph G with 4 vertices, v1, . . . , v4, and 4 different colors available c1, . . . , c4.

When encoding the problem into pwcnf the user could provide either the following
VERTEX-based or COLOR-based partition schemes:

COLOR-based

C1 C2 C3 C4

¬X c1v1

¬X c1v2

¬X c1v3

¬X c1v4

¬X c2v1

¬X c2v2

¬X c2v3

¬X c2v4

¬X c3v1

¬X c3v2

¬X c3v3

¬X c3v4

¬X c4v1

¬X c4v2

¬X c4v3

¬X c4v4

19 / 45



Use Case: Seating Assignment (SA)

We want to seat persons at tables such that the following properties are met:

• Each table has a minimum and a maximum number of persons;

• Each person is seated at exactly one table;

• Each person has some tags that represent their interests.

19 / 45



Use Case: Seating Assignment (SA)

We want to seat persons at tables such that the following properties are met:

• Each table has a minimum and a maximum number of persons;

• Each person is seated at exactly one table;

• Each person has some tags that represent their interests.

20 / 45



Use Case: Seating Assignment (SA)

We want to seat persons at tables such that the following properties are met:

• Each table has a minimum and a maximum number of persons;

• Each person is seated at exactly one table;

• Each person has some tags that represent their interests.

21 / 45



Use Case: Seating Assignment (SA)

We want to seat persons at tables such that the following properties are met:

• Each table has a minimum and a maximum number of persons;

• Each person is seated at exactly one table;

• Each person has some tags that represent their interests.

22 / 45



Use Case: Seating Assignment (SA)

We want to seat persons at tables such that the following properties are met:

• Each table has a minimum and a maximum number of persons;

• Each person is seated at exactly one table;

• Each person has some tags that represent their interests.

Goal: minimize the number of different tags between all persons seated at the same
table.

23 / 45



Use Case: Seating Assignment (SA)

• Y g
t is true if there is at least one person p with a tag g that is seated at table t.

• Goal (soft clauses): maximize ¬Y g
t .

• More details can be found in the extended version of this
paper [Orvalho et al., 2023].

23 / 45



Use Case: Seating Assignment (SA)

• Y g
t is true if there is at least one person p with a tag g that is seated at table t.

• Goal (soft clauses): maximize ¬Y g
t .

• More details can be found in the extended version of this
paper [Orvalho et al., 2023].

24 / 45



Use Case: Seating Assignment (SA)

• Y g
t is true if there is at least one person p with a tag g that is seated at table t.

• Goal (soft clauses): maximize ¬Y g
t .

• More details can be found in the extended version of this
paper [Orvalho et al., 2023].

25 / 45



Use Case: Seating Assignment (SA)

Example
Consider that a user wants to seat 5 persons, p1, . . . , p5, in two tables t1, t2. Moreover,
the set of different tags is {A, B, C}.

The user could provide either the following TAGS-based or TABLES-based partition
scheme:

TAGS-based

A B C

¬Y A
t1

¬Y A
t2

¬Y B
t1

¬Y B
t2

¬Y C
t1

¬Y C
t2

25 / 45



Use Case: Seating Assignment (SA)

Example
Consider that a user wants to seat 5 persons, p1, . . . , p5, in two tables t1, t2. Moreover,
the set of different tags is {A, B, C}.

The user could provide either the following TAGS-based or TABLES-based partition
scheme:

TAGS-based

A B C

¬Y A
t1

¬Y A
t2

¬Y B
t1

¬Y B
t2

¬Y C
t1

¬Y C
t2

26 / 45



Use Case: Seating Assignment (SA)

Example
Consider that a user wants to seat 5 persons, p1, . . . , p5, in two tables t1, t2. Moreover,
the set of different tags is {A, B, C}.

The user could provide either the following TAGS-based or TABLES-based partition
scheme:

TAGS-based

A B C

¬Y A
t1

¬Y A
t2

¬Y B
t1

¬Y B
t2

¬Y C
t1

¬Y C
t2

27 / 45



Use Case: Seating Assignment (SA)
Example
Consider that a user wants to seat 5 persons, p1, . . . , p5, in two tables t1, t2. Moreover,
the set of different tags is {A, B, C}.

The user could provide either the following TAGS-based or TABLES-based partition
scheme:

TABLES-based
t1 t2

¬Y A
t1

¬Y B
t1

¬Y C
t1

¬Y A
t2

¬Y B
t2

¬Y C
t2

28 / 45



Implementation

28 / 45



UpMax

• UpMax is built on top of the open-source Open-WBO MaxSAT
solver [Martins et al., 2014];

• UpMax supports the new format pwcnf for user-based partitioning.

• It can also take as input a wcnf formula and output a pwcnf formula using an
automatic partitioning strategy based on:

• VIG;
• CVIG;
• RES;
• randomly splitting the formula into k partitions.

29 / 45



UpMax

• UpMax is built on top of the open-source Open-WBO MaxSAT
solver [Martins et al., 2014];

• UpMax supports the new format pwcnf for user-based partitioning.

• It can also take as input a wcnf formula and output a pwcnf formula using an
automatic partitioning strategy based on:

• VIG;
• CVIG;
• RES;
• randomly splitting the formula into k partitions.

30 / 45



UpMax

• UpMax is built on top of the open-source Open-WBO MaxSAT
solver [Martins et al., 2014];

• UpMax supports the new format pwcnf for user-based partitioning.

• It can also take as input a wcnf formula and output a pwcnf formula using an
automatic partitioning strategy based on:

• VIG;
• CVIG;
• RES;
• randomly splitting the formula into k partitions.

31 / 45



UpMax

• UpMax currently supports three UNSAT-based algorithms
(WBO [Manquinho et al., 2009], OLL [Morgado et al., 2014], and
MSU3 [Martins et al., 2014 (b)]) for both unweighted and weighted problems that
take advantage of the partitions;

• We have also extended RC2 [Ignatiev et al., 2019] and
Hitman [Moreno-Centeno et al., 2013], available in PySAT [Ignatiev et al., 2018], to
use our pwcnf formulae.

31 / 45



UpMax

• UpMax currently supports three UNSAT-based algorithms
(WBO [Manquinho et al., 2009], OLL [Morgado et al., 2014], and
MSU3 [Martins et al., 2014 (b)]) for both unweighted and weighted problems that
take advantage of the partitions;

• We have also extended RC2 [Ignatiev et al., 2019] and
Hitman [Moreno-Centeno et al., 2013], available in PySAT [Ignatiev et al., 2018], to
use our pwcnf formulae.

32 / 45



Experimental Results

32 / 45



Experimental Results

• We randomly generate 1,000 instances for both use cases by varying the different
parameters of each problem.

• Partitioning strategies used:

• Graph-based partitions (VIG, CVIG, RES);
• Random partitioning strategy (k = 16);
• User-based partitions (UP):

• VERTEX/COLOR-based partitions (MSC);
• TAGS/TABLES-based partitions (SA);

• No partitions (wcnf).

• All of the experiments were run on StarExec [Stump et al., 2014], with a timeout of
1800 seconds and a memory limit of 32 GB.

33 / 45



Experimental Results

• We randomly generate 1,000 instances for both use cases by varying the different
parameters of each problem.

• Partitioning strategies used:
• Graph-based partitions (VIG, CVIG, RES);
• Random partitioning strategy (k = 16);
• User-based partitions (UP):

• VERTEX/COLOR-based partitions (MSC);
• TAGS/TABLES-based partitions (SA);

• No partitions (wcnf).

• All of the experiments were run on StarExec [Stump et al., 2014], with a timeout of
1800 seconds and a memory limit of 32 GB.

34 / 45



Experimental Results

• We randomly generate 1,000 instances for both use cases by varying the different
parameters of each problem.

• Partitioning strategies used:
• Graph-based partitions (VIG, CVIG, RES);
• Random partitioning strategy (k = 16);
• User-based partitions (UP):

• VERTEX/COLOR-based partitions (MSC);
• TAGS/TABLES-based partitions (SA);

• No partitions (wcnf).

• All of the experiments were run on StarExec [Stump et al., 2014], with a timeout of
1800 seconds and a memory limit of 32 GB.

35 / 45



Use Case: Minimum Sum Coloring

Table: Number of solved instances for the Minimum Sum Coloring (MSC) problem.

User Part. Graph Part.
Solver No Part. Vertex Color VIG CVIG RES Random

MSU3 245 758 770 774 770 775 776
OLL 796 863 594 945 944 947 756

WBO 483 622 314 745 750 755 493
Hitman 610 613 471 605 614 609 592

RC2 796 866 528 943 939 944 687

35 / 45



Use Case: Minimum Sum Coloring

Table: Number of solved instances for the Minimum Sum Coloring (MSC) problem.

User Part. Graph Part.
Solver No Part. Vertex Color VIG CVIG RES Random

MSU3 245 758 770 774 770 775 776
OLL 796 863 594 945 944 947 756

WBO 483 622 314 745 750 755 493
Hitman 610 613 471 605 614 609 592

RC2 796 866 528 943 939 944 687

MaxSAT Eval 2022:
• EvalMaxSAT: 729; MaxHS: 873; CASHWMaxSAT: 993;
• UWrMaxSat: 994; MaxCDCL: 995.

36 / 45



Use Case: Seating Assignment

Table: Number of solved instances for the Seating Assignment problem.

User Part. Graph Part.
Solver No Part. Table Tag VIG CVIG RES Random

MSU3 558 671 639 659 641 640 565
OLL 526 634 624 627 599 608 528

WBO 306 400 536 400 385 386 360
Hitman 420 403 510 406 425 420 440

RC2 530 620 624 618 600 597 541

36 / 45



Use Case: Seating Assignment

Table: Number of solved instances for the Seating Assignment problem.

User Part. Graph Part.
Solver No Part. Table Tag VIG CVIG RES Random

MSU3 558 671 639 659 641 640 565
OLL 526 634 624 627 599 608 528

WBO 306 400 536 400 385 386 360
Hitman 420 403 510 406 425 420 440

RC2 530 620 624 618 600 597 541

MaxSAT Eval 2022:
• UWrMaxSat: 580; CASHWMaxSAT: 585, MaxCDCL: 593;
• MaxHS: 643, EvalMaxSAT: 653;

37 / 45



To conclude

• In this paper, we propose UpMax, a new framework that decouples the partition
generation from the MaxSAT solving.

• UpMax allows users to specify how to partition MaxSAT formulae based on
their domain knowledge with the pwcnf format.

• Experimental results with two use cases with 5 algorithms (MSU3, WBO, OLL, RC2,
Hitman), show that partitioning can improve the performance of MaxSAT
algorithms.

• Check AlloyMax [Zhang et al., 2021] paper for UpMax’s results on other
application domains.

37 / 45



To conclude

• In this paper, we propose UpMax, a new framework that decouples the partition
generation from the MaxSAT solving.

• UpMax allows users to specify how to partition MaxSAT formulae based on
their domain knowledge with the pwcnf format.

• Experimental results with two use cases with 5 algorithms (MSU3, WBO, OLL, RC2,
Hitman), show that partitioning can improve the performance of MaxSAT
algorithms.

• Check AlloyMax [Zhang et al., 2021] paper for UpMax’s results on other
application domains.

38 / 45



To conclude

• In this paper, we propose UpMax, a new framework that decouples the partition
generation from the MaxSAT solving.

• UpMax allows users to specify how to partition MaxSAT formulae based on
their domain knowledge with the pwcnf format.

• Experimental results with two use cases with 5 algorithms (MSU3, WBO, OLL, RC2,
Hitman), show that partitioning can improve the performance of MaxSAT
algorithms.

• Check AlloyMax [Zhang et al., 2021] paper for UpMax’s results on other
application domains.

39 / 45



To conclude

• In this paper, we propose UpMax, a new framework that decouples the partition
generation from the MaxSAT solving.

• UpMax allows users to specify how to partition MaxSAT formulae based on
their domain knowledge with the pwcnf format.

• Experimental results with two use cases with 5 algorithms (MSU3, WBO, OLL, RC2,
Hitman), show that partitioning can improve the performance of MaxSAT
algorithms.

• Check AlloyMax [Zhang et al., 2021] paper for UpMax’s results on other
application domains.

40 / 45



UpMax

Thank you!

40 / 45



UpMax

Thank you!

41 / 45



References

Ruben Martins and Vasco Manquinho and Inês Lynce (2012)
On Partitioning for Maximum Satisfiability.
ECAI 12.
Carlos Ansótegui and Maria Luisa Bonet and Joel Gabàs and Jordi Levy (2012)
Improving SAT-Based Weighted MaxSAT Solvers.
CP 12.
Ruben Martins and Vasco Manquinho and Inês Lynce (2014)
Open-WBO: a Modular MaxSAT Solver.
SAT 14.
Miguel Neves and Ruben Martins and Mikolás Janota and Inês Lynce and Vasco Manquinho (2015)
Exploiting Resolution-Based Representations for MaxSAT Solving.
SAT 15.

42 / 45



References (2)

Vasco Manquinho and Joao Marques-Silva and Jordi Planes (2009)
Algorithms for Weighted Boolean Optimization.
SAT 09.
Ruben Martins and Saurabh Joshi and Vasco Manquinho and Inês Lynce (2014)
Incremental Cardinality Constraints for MaxSAT.
CP 14.
António Morgado and Carmine Dodaro and João Marques-Silva (2014)
Core-Guided MaxSAT with Soft Cardinality Constraints.
CP 14.
Alexey Ignatiev and António Morgado and João Marques-Silva (2019)
RC2: an Efficient MaxSAT Solver.
SAT 19.

43 / 45



References (3)
Erick Moreno-Centeno and Richard M. Karp (2013)
The Implicit Hitting Set Approach to Solve Combinatorial Optimization Problems with an
Application to Multigenome Alignment.
Oper. Res. 13.

Alexey Ignatiev and António Morgado and João Marques-Silva (2018)
PySAT: A Python Toolkit for Prototyping with SAT Oracles.
SAT 18.
Aaron Stump and Geoff Sutcliffe and Cesare Tinelli (2014)
StarExec: A Cross-Community Infrastructure for Logic Solving.
IJCAR 14.
Changjian Zhang and Ryan Wagner and Pedro Orvalho and David Garlan and Vasco Manquinho and
Ruben Martins and Eunsuk Kang (2021)
AlloyMax: bringing maximum satisfaction to relational specifications.
ESEC/FSE 21.

44 / 45



References (4)

Pedro Orvalho and Vasco Manquinho and Ruben Martins (2023)
UpMax: User partitioning for MaxSAT.
arXiv 2305.16191.
Pedro Orvalho and Vasco Manquinho and Ruben Martins (2023)
UpMax: User partitioning for MaxSAT.
SAT 2023.

45 / 45


	User-based Partitioning
	UpMax
	Use Cases
	Experimental Results

