
Learning Shorter Redundant Clauses in SDCL
Using MaxSAT

Albert Oliveras1, Chunxiao Li2, Darryl Wu2, Jonathan Chung2, Vijay Ganesh2

1Universitat Politècnica de Catalunya

2University of Waterloo

SAT 2023, July 8th, l’Alguer

Oliveras, Li, Wu, Chung and Ganesh Learning Shorter Clauses in SDCL SAT 2023, July 8th, l’Alguer 1 / 26

Outline of the Talk

1 Preliminaries
SAT, CDCL and Limitations
Redundancy Notions

2 SDCL
From CDCL to SDCL
Pruning Predicates

3 Learning Shorter Redundant Clauses
Motivation
Difficulty of the Problem
A MaxSAT Encoding
SDCL with Redundant Clause Minimization

4 Experimental Evaluation
Design Decisions
Evaluation

5 Conclusions

Oliveras, Li, Wu, Chung and Ganesh Learning Shorter Clauses in SDCL SAT 2023, July 8th, l’Alguer 2 / 26

Outline of the Talk

1 Preliminaries
SAT, CDCL and Limitations
Redundancy Notions

2 SDCL
From CDCL to SDCL
Pruning Predicates

3 Learning Shorter Redundant Clauses
Motivation
Difficulty of the Problem
A MaxSAT Encoding
SDCL with Redundant Clause Minimization

4 Experimental Evaluation
Design Decisions
Evaluation

5 Conclusions

Oliveras, Li, Wu, Chung and Ganesh Learning Shorter Clauses in SDCL SAT 2023, July 8th, l’Alguer 2 / 26

SAT, CDCL and Limitations

SAT solving is a success story, with CDCL being the dominant method

We like bragging: CDCL solves instances with millions of vars/clauses

However, there are very small instances that CDCL will never solve
efficiently (e.g. pigeon-hole, mutilated chessboard)

These limitations are known due to:

Poly. equivalence between CDCL and resolution [AFT11,PD11]
Lower bounds on resolution proof sizes for some problems [Hak85]

A natural research direction is to extend CDCL so that its underlying
proof system is stronger than resolution.

Oliveras, Li, Wu, Chung and Ganesh Learning Shorter Clauses in SDCL SAT 2023, July 8th, l’Alguer 3 / 26

Redundancy Notions

A proof system that is more powerful than resolution is based on redundancy:

Definition ([HKB17])

A clause C is redundant wrt F if and only if F and F ∧ C are equisatisfiable

Theorem ([HKB17])

A clause C is redundant wrt F if and only if there exists an assignment ω
such that ω |= C and F ∧ ¬C |= F |ω (where F |ω is the result of removing from
F all clauses satisfied by ω and all literals falsified by ω, i.e. simplify F wrt ω)

But, even if we know ω (witness), it is hard to check that F ∧ ¬C |= F |ω.
This is why a weaker notion is considered:

Definition ([HKB17])

A clause C is Propagation Redundant (PR) wrt F if and only if there exists
an assignment ω such that ω |= C and F ∧ ¬C ⊢1 F |ω
(i.e. UnitProp(F ∧ ¬C ∧ ¬F |ω) = conflict)

Oliveras, Li, Wu, Chung and Ganesh Learning Shorter Clauses in SDCL SAT 2023, July 8th, l’Alguer 4 / 26

Redundancy Notions

A proof system that is more powerful than resolution is based on redundancy:

Definition ([HKB17])

A clause C is redundant wrt F if and only if F and F ∧ C are equisatisfiable

Theorem ([HKB17])

A clause C is redundant wrt F if and only if there exists an assignment ω
such that ω |= C and F ∧ ¬C |= F |ω (where F |ω is the result of removing from
F all clauses satisfied by ω and all literals falsified by ω, i.e. simplify F wrt ω)

But, even if we know ω (witness), it is hard to check that F ∧ ¬C |= F |ω.
This is why a weaker notion is considered:

Definition ([HKB17])

A clause C is Propagation Redundant (PR) wrt F if and only if there exists
an assignment ω such that ω |= C and F ∧ ¬C ⊢1 F |ω
(i.e. UnitProp(F ∧ ¬C ∧ ¬F |ω) = conflict)

Oliveras, Li, Wu, Chung and Ganesh Learning Shorter Clauses in SDCL SAT 2023, July 8th, l’Alguer 4 / 26

Redundancy Notions

A proof system that is more powerful than resolution is based on redundancy:

Definition ([HKB17])

A clause C is redundant wrt F if and only if F and F ∧ C are equisatisfiable

Theorem ([HKB17])

A clause C is redundant wrt F if and only if there exists an assignment ω
such that ω |= C and F ∧ ¬C |= F |ω (where F |ω is the result of removing from
F all clauses satisfied by ω and all literals falsified by ω, i.e. simplify F wrt ω)

But, even if we know ω (witness), it is hard to check that F ∧ ¬C |= F |ω.
This is why a weaker notion is considered:

Definition ([HKB17])

A clause C is Propagation Redundant (PR) wrt F if and only if there exists
an assignment ω such that ω |= C and F ∧ ¬C ⊢1 F |ω
(i.e. UnitProp(F ∧ ¬C ∧ ¬F |ω) = conflict)

Oliveras, Li, Wu, Chung and Ganesh Learning Shorter Clauses in SDCL SAT 2023, July 8th, l’Alguer 4 / 26

Redundancy Notions (2)

Definition
A clause C is Propagation Redundant (PR) wrt F if and only if there exists
an assignment ω such that ω |= C and F ∧ ¬C ⊢1 F |ω
(i.e. UnitProp(F ∧ ¬C ∧ ¬F |ω) = conflict)

Particular cases of PR clauses:

SPR: ω assigns only variables of C

LPR/RAT: ω assigns only vars of C and satisfies exactly one lit of C

Set-blocked [KSTB16]: particular case of SPR, syntactic definition

Blocked [JBH10]: particular case of set-blocked, syntactic definition

Oliveras, Li, Wu, Chung and Ganesh Learning Shorter Clauses in SDCL SAT 2023, July 8th, l’Alguer 5 / 26

Outline of the Talk

1 Preliminaries
SAT, CDCL and Limitations
Redundancy Notions

2 SDCL
From CDCL to SDCL
Pruning Predicates

3 Learning Shorter Redundant Clauses
Motivation
Difficulty of the Problem
A MaxSAT Encoding
SDCL with Redundant Clause Minimization

4 Experimental Evaluation
Design Decisions
Evaluation

5 Conclusions

Oliveras, Li, Wu, Chung and Ganesh Learning Shorter Clauses in SDCL SAT 2023, July 8th, l’Alguer 5 / 26

From CDCL to SDCL

Conflict-Driven Clause-Learning (CDCL) can be seen as the right way to
implement a resolution-based proof procedure:

α := ∅
while true do

α := unitPropagate(F , α)
if conflict found then

C := analyzeConflict()
F := F ∧ C
if C is the empty clause then return UNSAT
α := backjump(C, α)

else
if all variables are assigned then return SAT
α := α ∪ Decide()

Oliveras, Li, Wu, Chung and Ganesh Learning Shorter Clauses in SDCL SAT 2023, July 8th, l’Alguer 6 / 26

From CDCL to SDCL

Satisfiability-Driven Clause-Learning (SDCL) [HKSB17]) is a way to
implement a redundancy-based proof procedure:

α := ∅
while true do

α := unitPropagate(F , α)
if conflict found then

C := analyzeConflict()
F := F ∧ C
if C is the empty clause then return UNSAT
α := backjump(C, α)

else if ¬α is redundant wrt F then
C := decisions(¬α)
F := F ∧ C
α := backjump(C, α)

else
if all variables are assigned then return SAT
α := α ∪ Decide()

Oliveras, Li, Wu, Chung and Ganesh Learning Shorter Clauses in SDCL SAT 2023, July 8th, l’Alguer 7 / 26

From CDCL to SDCL
SDCL is a way to implement a redundancy-based proof procedure:

α := ∅
while true do

α := unitPropagate(F , α)
if conflict found then

C := analyzeConflict()
F := F ∧ C
if C is the empty clause then return UNSAT
α := backjump(C, α)

else if Pα(F) is satisfiable then
C := decisions(¬α)
F := F ∧ C
α := backjump(C, α)

else
if all variables are assigned then return SAT
α := α ∪ Decide()

Definition ([HKSB17])

A pruning predicate for F and α is a formula Pα(F) such that, if Pα(F) is
satisfiable then clause ¬α is redundant wrt F
Oliveras, Li, Wu, Chung and Ganesh Learning Shorter Clauses in SDCL SAT 2023, July 8th, l’Alguer 8 / 26

Pruning Predicates

Definition

A pruning predicate for F and α is a formula Pα(F) such that, if Pα(F) is
satisfiable then clause ¬α is redundant wrt F

Do we know how to construct pruning predicates?

Purely positive reduct: formula ¬α ∧ G, where
G = {satisfiedα(D) | D ∈ F and α |= D}.

Positive reduct: formula ¬α ∧ G, where
G = {touchedα(D) | D ∈ F and α |= D}. [The one used in this work.]

Filtered positive reduct: formula ¬α ∧ G, where
G = {touchedα(D) | D ∈ F and F ∧ α ̸⊢1 untouchedα(D)}.

Proposition (Contribution of this paper)

The purely positive reduct is satisfiable if and only if ¬α is blocked in F .

Oliveras, Li, Wu, Chung and Ganesh Learning Shorter Clauses in SDCL SAT 2023, July 8th, l’Alguer 9 / 26

Pruning Predicates

Definition

A pruning predicate for F and α is a formula Pα(F) such that, if Pα(F) is
satisfiable then clause ¬α is redundant wrt F

Do we know how to construct pruning predicates?

Purely positive reduct: formula ¬α ∧ G, where
G = {satisfiedα(D) | D ∈ F and α |= D}.

Positive reduct: formula ¬α ∧ G, where
G = {touchedα(D) | D ∈ F and α |= D}. [The one used in this work.]

Filtered positive reduct: formula ¬α ∧ G, where
G = {touchedα(D) | D ∈ F and F ∧ α ̸⊢1 untouchedα(D)}.

Proposition ([HKSB17])

The positive reduct is satisfiable if and only if ¬α is set-blocked in F .

Oliveras, Li, Wu, Chung and Ganesh Learning Shorter Clauses in SDCL SAT 2023, July 8th, l’Alguer 9 / 26

Pruning Predicates

Definition

A pruning predicate for F and α is a formula Pα(F) such that, if Pα(F) is
satisfiable then clause ¬α is redundant wrt F

Do we know how to construct pruning predicates?

Purely positive reduct: formula ¬α ∧ G, where
G = {satisfiedα(D) | D ∈ F and α |= D}.

Positive reduct: formula ¬α ∧ G, where
G = {touchedα(D) | D ∈ F and α |= D}. [The one used in this work.]

Filtered positive reduct: formula ¬α ∧ G, where
G = {touchedα(D) | D ∈ F and F ∧ α ̸⊢1 untouchedα(D)}.

Proposition ([HKB19])

The filtered positive reduct is satisfiable if and only if ¬α is SPR in F .

Oliveras, Li, Wu, Chung and Ganesh Learning Shorter Clauses in SDCL SAT 2023, July 8th, l’Alguer 9 / 26

Outline of the Talk

1 Preliminaries
SAT, CDCL and Limitations
Redundancy Notions

2 SDCL
From CDCL to SDCL
Pruning Predicates

3 Learning Shorter Redundant Clauses
Motivation
Difficulty of the Problem
A MaxSAT Encoding
SDCL with Redundant Clause Minimization

4 Experimental Evaluation
Design Decisions
Evaluation

5 Conclusions

Oliveras, Li, Wu, Chung and Ganesh Learning Shorter Clauses in SDCL SAT 2023, July 8th, l’Alguer 9 / 26

Motivation

α := ∅
while true do

α := unitPropagate(F , α)
if conflict found then

C := analyzeConflict()
F := F ∧ C
if C is the empty clause then return UNSAT
α := backjump(C, α)

else if Pα(F) is satisfiable then
C := decisions(¬α)
F := F ∧ C
α := backjump(C, α)

else
if all variables are assigned then return SAT
α := α ∪ Decide()

In the original SDCL design, the redundant clause to be learned is the
negation of all decisions in α.

Our experience from CDCL suggests that this is not the best choice.

Oliveras, Li, Wu, Chung and Ganesh Learning Shorter Clauses in SDCL SAT 2023, July 8th, l’Alguer 10 / 26

Motivation - Example

Positive reduct

pα(F) = ¬α ∧ G, where G = {touchedα(D) | D ∈ F and α |= D}.

Let us consider F and an assignment α built by the SAT solver:

F

x1 ∨ x2 ∨ x4
x1 ∨ ¬x2 ∨ x5
¬x1 ∨ ¬x4 ∨ x5
x2 ∨ x4 ∨ ¬x5
x3 ∨ x6 ∨ ¬x5

α = {xd
1 , x

d
4 , x5,¬xd

2 }

pα(F)

¬x1 ∨ ¬x4 ∨ ¬x5 ∨ x2
x1 ∨ x2 ∨ x4
x1 ∨ ¬x2 ∨ x5
¬x1 ∨ ¬x4 ∨ x5
x2 ∨ x4 ∨ ¬x5

Since pα(F) is satisfiable ({x1, x2, x5}) we can learn clause ¬x1 ∨ ¬x4 ∨ x2

Oliveras, Li, Wu, Chung and Ganesh Learning Shorter Clauses in SDCL SAT 2023, July 8th, l’Alguer 11 / 26

Motivation - Example

Positive reduct

pα(F) = ¬α ∧ G, where G = {touchedα(D) | D ∈ F and α |= D}.

Let us consider F and an assignment α built by the SAT solver:

F

x1 ∨ x2 ∨ x4
x1 ∨ ¬x2 ∨ x5
¬x1 ∨ ¬x4 ∨ x5
x2 ∨ x4 ∨ ¬x5
x3 ∨ x6 ∨ ¬x5

α = {xd
1 , x

d
4 , x5,¬xd

2 }

pα(F)

¬x1 ∨ ¬x4 ∨ ¬x5 ∨ x2
x1 ∨ x2 ∨ x4
x1 ∨ ¬x2 ∨ x5
¬x1 ∨ ¬x4 ∨ x5
x2 ∨ x4 ∨ ¬x5

Since pα(F) is satisfiable ({x1, x2, x5}) we can learn clause ¬x1 ∨ ¬x4 ∨ x2

Oliveras, Li, Wu, Chung and Ganesh Learning Shorter Clauses in SDCL SAT 2023, July 8th, l’Alguer 11 / 26

Motivation - Example

Positive reduct

pα(F) = ¬α ∧ G, where G = {touchedα(D) | D ∈ F and α |= D}.

Let us consider F and an assignment α built by the SAT solver:

F

x1 ∨ x2 ∨ x4
x1 ∨ ¬x2 ∨ x5
¬x1 ∨ ¬x4 ∨ x5
x2 ∨ x4 ∨ ¬x5
x3 ∨ x6 ∨ ¬x5

α = {xd
1 , x

d
4 , x5,¬xd

2 }

pα(F)

¬x1 ∨ ¬x4 ∨ ¬x5 ∨ x2
x1 ∨ x2 ∨ x4
x1 ∨ ¬x2 ∨ x5
¬x1 ∨ ¬x4 ∨ x5
x2 ∨ x4 ∨ ¬x5

Since pα(F) is satisfiable ({x1, x2, x5}) we can learn clause ¬x1 ∨ ¬x4 ∨ x2

Oliveras, Li, Wu, Chung and Ganesh Learning Shorter Clauses in SDCL SAT 2023, July 8th, l’Alguer 11 / 26

Motivation - Example

Positive reduct

pα(F) = ¬α ∧ G, where G = {touchedα(D) | D ∈ F and α |= D}.

Let us consider F and an assignment α built by the SAT solver:

F

x1 ∨ x2 ∨ x4
x1 ∨ ¬x2 ∨ x5
¬x1 ∨ ¬x4 ∨ x5
x2 ∨ x4 ∨ ¬x5
x3 ∨ x6 ∨ ¬x5

α = {xd
1 , x

d
4 , x5,¬xd

2 }

pα(F)

¬x1 ∨ ¬x4 ∨ ¬x5 ∨ x2
x1 ∨ x2 ∨ x4
x1 ∨ ¬x2 ∨ x5
¬x1 ∨ ¬x4 ∨ x5
x2 ∨ x4 ∨ ¬x5

Since pα(F) is satisfiable ({x1, x2, x5}) we can learn clause ¬x1 ∨ ¬x4 ∨ x2

Oliveras, Li, Wu, Chung and Ganesh Learning Shorter Clauses in SDCL SAT 2023, July 8th, l’Alguer 11 / 26

Motivation - Example

Positive reduct

pα(F) = ¬α ∧ G, where G = {touchedα(D) | D ∈ F and α |= D}.

Let us consider F and an assignment α built by the SAT solver:

F

x1 ∨ x2 ∨ x4
x1 ∨ ¬x2 ∨ x5
¬x1 ∨ ¬x4 ∨ x5
x2 ∨ x4 ∨ ¬x5
x3 ∨ x6 ∨ ¬x5

α = {xd
1 , x

d
4 , x5,¬xd

2 }

pα(F)

¬x1 ∨ ¬x4 ∨ ¬x5 ∨ x2
x1 ∨ x2 ∨ x4
x1 ∨ ¬x2 ∨ x5
¬x1 ∨ ¬x4 ∨ x5
x2 ∨ x4 ∨ ¬x5

Since pα(F) is satisfiable ({x1, x2, x5}) we can learn clause ¬x1 ∨ ¬x4 ∨ x2

Oliveras, Li, Wu, Chung and Ganesh Learning Shorter Clauses in SDCL SAT 2023, July 8th, l’Alguer 11 / 26

Motivation - Example

Positive reduct

pα(F) = ¬α ∧ G, where G = {touchedα(D) | D ∈ F and α |= D}.

Let us consider F and an assignment α built by the SAT solver:

F

x1 ∨ x2 ∨ x4
x1 ∨ ¬x2 ∨ x5
¬x1 ∨ ¬x4 ∨ x5
x2 ∨ x4 ∨ ¬x5
x3 ∨ x6 ∨ ¬x5

α = {xd
1 , x

d
4 , x5,¬xd

2 }

pα(F)

¬x1 ∨ ¬x4 ∨ ¬x5 ∨ x2
x1 ∨ x2 ∨ x4
x1 ∨ ¬x2 ∨ x5
¬x1 ∨ ¬x4 ∨ x5
x2 ∨ x4 ∨ ¬x5

Since pα(F) is satisfiable ({x1, x2, x5}) we can learn clause ¬x1 ∨ ¬x4 ∨ x2

Oliveras, Li, Wu, Chung and Ganesh Learning Shorter Clauses in SDCL SAT 2023, July 8th, l’Alguer 11 / 26

Motivation - Example

Positive reduct

pα(F) = ¬α ∧ G, where G = {touchedα(D) | D ∈ F and α |= D}.

Let us now consider another assignment γ ⊆ α:

F

x1 ∨ x2 ∨ x4
x1 ∨ ¬x2 ∨ x5
¬x1 ∨ ¬x4 ∨ x5
x2 ∨ x4 ∨ ¬x5
x3 ∨ x6 ∨ ¬x5

α = {xd
1 , x

d
4 , x5,¬xd

2 }

pα(F)

¬x1 ∨ ¬x4 ∨ ¬x5 ∨ x2
x1 ∨ x2 ∨ x4
x1 ∨ ¬x2 ∨ x5
¬x1 ∨ ¬x4 ∨ x5
x2 ∨ x4 ∨ ¬x5

γ = {x1,¬x2}

pγ(F)

¬x1 ∨ x2
x1 ∨ x2
x1 ∨ ¬x2

Since pα(F) is satisfiable ({x1, x2, x5}) we can learn clause ¬x1 ∨ ¬x4 ∨ x2.

Since pγ(F) is satisfiable ({x1, x2}) we can learn clause ¬x1 ∨ x2

Oliveras, Li, Wu, Chung and Ganesh Learning Shorter Clauses in SDCL SAT 2023, July 8th, l’Alguer 11 / 26

Motivation - Example

Positive reduct

pα(F) = ¬α ∧ G, where G = {touchedα(D) | D ∈ F and α |= D}.

Let us now consider another assignment γ ⊆ α:

F

x1 ∨ x2 ∨ x4
x1 ∨ ¬x2 ∨ x5
¬x1 ∨ ¬x4 ∨ x5
x2 ∨ x4 ∨ ¬x5
x3 ∨ x6 ∨ ¬x5

α = {xd
1 , x

d
4 , x5,¬xd

2 }

pα(F)

¬x1 ∨ ¬x4 ∨ ¬x5 ∨ x2
x1 ∨ x2 ∨ x4
x1 ∨ ¬x2 ∨ x5
¬x1 ∨ ¬x4 ∨ x5
x2 ∨ x4 ∨ ¬x5

γ = {x1,¬x2}

pγ(F)

¬x1 ∨ x2
x1 ∨ x2
x1 ∨ ¬x2

Since pα(F) is satisfiable ({x1, x2, x5}) we can learn clause ¬x1 ∨ ¬x4 ∨ x2.

Since pγ(F) is satisfiable ({x1, x2}) we can learn clause ¬x1 ∨ x2

Oliveras, Li, Wu, Chung and Ganesh Learning Shorter Clauses in SDCL SAT 2023, July 8th, l’Alguer 11 / 26

Motivation - Example

Positive reduct

pα(F) = ¬α ∧ G, where G = {touchedα(D) | D ∈ F and α |= D}.

Let us now consider another assignment γ ⊆ α:

F

x1 ∨ x2 ∨ x4
x1 ∨ ¬x2 ∨ x5
¬x1 ∨ ¬x4 ∨ x5
x2 ∨ x4 ∨ ¬x5
x3 ∨ x6 ∨ ¬x5

α = {xd
1 , x

d
4 , x5,¬xd

2 }

pα(F)

¬x1 ∨ ¬x4 ∨ ¬x5 ∨ x2
x1 ∨ x2 ∨ x4
x1 ∨ ¬x2 ∨ x5
¬x1 ∨ ¬x4 ∨ x5
x2 ∨ x4 ∨ ¬x5

γ = {x1,¬x2}

pγ(F)

¬x1 ∨ x2
x1 ∨ x2
x1 ∨ ¬x2

Since pα(F) is satisfiable ({x1, x2, x5}) we can learn clause ¬x1 ∨ ¬x4 ∨ x2.

Since pγ(F) is satisfiable ({x1, x2}) we can learn clause ¬x1 ∨ x2

Oliveras, Li, Wu, Chung and Ganesh Learning Shorter Clauses in SDCL SAT 2023, July 8th, l’Alguer 11 / 26

Motivation - Example

Positive reduct

pα(F) = ¬α ∧ G, where G = {touchedα(D) | D ∈ F and α |= D}.

Let us now consider another assignment γ ⊆ α:

F

x1 ∨ x2 ∨ x4
x1 ∨ ¬x2 ∨ x5
¬x1 ∨ ¬x4 ∨ x5
x2 ∨ x4 ∨ ¬x5
x3 ∨ x6 ∨ ¬x5

α = {xd
1 , x

d
4 , x5,¬xd

2 }

pα(F)

¬x1 ∨ ¬x4 ∨ ¬x5 ∨ x2
x1 ∨ x2 ∨ x4
x1 ∨ ¬x2 ∨ x5
¬x1 ∨ ¬x4 ∨ x5
x2 ∨ x4 ∨ ¬x5

γ = {x1,¬x2}

pγ(F)

¬x1 ∨ x2
x1 ∨ x2
x1 ∨ ¬x2

Since pα(F) is satisfiable ({x1, x2, x5}) we can learn clause ¬x1 ∨ ¬x4 ∨ x2.

Since pγ(F) is satisfiable ({x1, x2}) we can learn clause ¬x1 ∨ x2

Oliveras, Li, Wu, Chung and Ganesh Learning Shorter Clauses in SDCL SAT 2023, July 8th, l’Alguer 11 / 26

Motivation - Example

Positive reduct

pα(F) = ¬α ∧ G, where G = {touchedα(D) | D ∈ F and α |= D}.

Let us now consider another assignment γ ⊆ α:

F

x1 ∨ x2 ∨ x4
x1 ∨ ¬x2 ∨ x5
¬x1 ∨ ¬x4 ∨ x5
x2 ∨ x4 ∨ ¬x5
x3 ∨ x6 ∨ ¬x5

α = {xd
1 , x

d
4 , x5,¬xd

2 }

pα(F)

¬x1 ∨ ¬x4 ∨ ¬x5 ∨ x2
x1 ∨ x2 ∨ x4
x1 ∨ ¬x2 ∨ x5
¬x1 ∨ ¬x4 ∨ x5
x2 ∨ x4 ∨ ¬x5

γ = {x1,¬x2}

pγ(F)

¬x1 ∨ x2
x1 ∨ x2
x1 ∨ ¬x2

Since pα(F) is satisfiable ({x1, x2, x5}) we can learn clause ¬x1 ∨ ¬x4 ∨ x2.

Since pγ(F) is satisfiable ({x1, x2}) we can learn clause ¬x1 ∨ x2

Subsets γ ⊆ α for which pγ(F) is satisfiable give shorter redundant clauses.
Oliveras, Li, Wu, Chung and Ganesh Learning Shorter Clauses in SDCL SAT 2023, July 8th, l’Alguer 11 / 26

Difficulty of the Problem

Definition
TRAIL-MINIMIZATION: given a formula F , an assignment α and an integer
k ≥ 0, we want to know whether there is a subset γ ⊆ α of size k such that
pγ(F) is satisfiable.

Theorem
TRAIL-MINIMIZATION is NP-hard

A natural way to solve TRAIL-MINIMIZATION is via a MaxSAT encoding

Oliveras, Li, Wu, Chung and Ganesh Learning Shorter Clauses in SDCL SAT 2023, July 8th, l’Alguer 12 / 26

A MaxSAT Encoding for TRAIL-MINIMIZATION

Let α = {α1, α2, · · · , αk}. For each literal αi ∈ α, we introduce three variables
{ri ,pi ,ni}. We will add soft clauses [ri] and hard clauses:

¬ri → pi = αi

¬ri → ni = ¬αi

ri → ¬pi

ri → ¬ni

F

x1 ∨ x2 ∨ x4

x1 ∨ ¬x2 ∨ x5

¬x1 ∨ ¬x4 ∨ x5

x2 ∨ x4 ∨ ¬x5

x3 ∨ x6 ∨ ¬x5

α = {xd
1 , x

d
4 , x5,¬xd

2 }

pα(F)

¬x1 ∨ ¬x4 ∨ ¬x5 ∨ x2

x1 ∨ x2 ∨ x4

x1 ∨ ¬x2 ∨ x5

¬x1 ∨ ¬x4 ∨ x5

x2 ∨ x4 ∨ ¬x5

MaxSAT encoding

n1 ∨ n4 ∨ n5 ∨ n2

p1 ∨ n2 ∨ p4 ∨ r1

p1 ∨ n2 ∨ p4 ∨ r4

p1 ∨ p2 ∨ p5 ∨ r1

p1 ∨ p2 ∨ p5 ∨ r2

p1 ∨ p2 ∨ p5 ∨ r5

n1 ∨ n4 ∨ p5 ∨ r5

n2 ∨ p4 ∨ n5 ∨ r4

Oliveras, Li, Wu, Chung and Ganesh Learning Shorter Clauses in SDCL SAT 2023, July 8th, l’Alguer 13 / 26

A MaxSAT Encoding for TRAIL-MINIMIZATION

For each variable xi in pα(F), we introduce three vars {ri ,pi ,ni}. We will add
soft clauses [ri] and hard clauses:

ri → ¬pi

ri → ¬ni

¬ri → pi = αi

¬ri → ni = ¬αi

If we remove x4 and x5 from α we obtain γ. Let us set
r4, r5 to true and r1, r2 to false.

The implications set ¬p4,¬n4,¬p5,¬n5 and
p1=x1, n1=¬x1, p2=¬x2, n2=x2.

F

x1 ∨ x2 ∨ x4

x1 ∨ ¬x2 ∨ x5

¬x1 ∨ ¬x4 ∨ x5

x2 ∨ x4 ∨ ¬x5

x3 ∨ x6 ∨ ¬x5

α = {xd
1 , x

d
4 , x5,¬xd

2 }

pα(F)

¬x1 ∨ ¬x4 ∨ ¬x5 ∨ x2

x1 ∨ x2 ∨ x4

x1 ∨ ¬x2 ∨ x5

¬x1 ∨ ¬x4 ∨ x5

x2 ∨ x4 ∨ ¬x5

MaxSAT encoding

n1 ∨ n4 ∨ n5 ∨ n2

p1 ∨ n2 ∨ p4 ∨ r1

p1 ∨ n2 ∨ p4 ∨ r4

p1 ∨ p2 ∨ p5 ∨ r1

p1 ∨ p2 ∨ p5 ∨ r2

p1 ∨ p2 ∨ p5 ∨ r5

n1 ∨ n4 ∨ p5 ∨ r5

n2 ∨ p4 ∨ n5 ∨ r4

Oliveras, Li, Wu, Chung and Ganesh Learning Shorter Clauses in SDCL SAT 2023, July 8th, l’Alguer 13 / 26

A MaxSAT Encoding for TRAIL-MINIMIZATION

For each variable xi in pα(F), we introduce three vars {ri ,pi ,ni}. We will add
soft clauses [ri] and hard clauses:

ri → ¬pi

ri → ¬ni

¬ri → pi = αi

¬ri → ni = ¬αi

If we remove x4 and x5 from α we obtain γ. Let us set
r4, r5 to true and r1, r2 to false.

The implications set ¬p4,¬n4,¬p5,¬n5 and
p1=x1, n1=¬x1, p2=¬x2, n2=x2.

F

x1 ∨ x2 ∨ x4

x1 ∨ ¬x2 ∨ x5

¬x1 ∨ ¬x4 ∨ x5

x2 ∨ x4 ∨ ¬x5

x3 ∨ x6 ∨ ¬x5

α = {xd
1 , x

d
4 , x5,¬xd

2 }

pα(F)

¬x1 ∨ ¬x4 ∨ ¬x5 ∨ x2

x1 ∨ x2 ∨ x4

x1 ∨ ¬x2 ∨ x5

¬x1 ∨ ¬x4 ∨ x5

x2 ∨ x4 ∨ ¬x5

MaxSAT encoding

¬x1 ∨ ∨ x2

p1 ∨ n2 ∨ p4 ∨ r1

p1 ∨ n2 ∨ p4 ∨ r4

p1 ∨ p2 ∨ p5 ∨ r1

p1 ∨ p2 ∨ p5 ∨ r2

p1 ∨ p2 ∨ p5 ∨ r5

n1 ∨ n4 ∨ p5 ∨ r5

n2 ∨ p4 ∨ n5 ∨ r4

Oliveras, Li, Wu, Chung and Ganesh Learning Shorter Clauses in SDCL SAT 2023, July 8th, l’Alguer 13 / 26

A MaxSAT Encoding for TRAIL-MINIMIZATION

For each variable xi in pα(F), we introduce three vars {ri ,pi ,ni}. We will add
soft clauses [ri] and hard clauses:

ri → ¬pi

ri → ¬ni

¬ri → pi = αi

¬ri → ni = ¬αi

If we remove x4 and x5 from α we obtain γ. Let us set
r4, r5 to true and r1, r2 to false.

The implications set ¬p4,¬n4,¬p5,¬n5 and
p1=x1, n1=¬x1, p2=¬x2, n2=x2.

F

x1 ∨ x2 ∨ x4

x1 ∨ ¬x2 ∨ x5

¬x1 ∨ ¬x4 ∨ x5

x2 ∨ x4 ∨ ¬x5

x3 ∨ x6 ∨ ¬x5

α = {xd
1 , x

d
4 , x5,¬xd

2 }

pα(F)

¬x1 ∨ ¬x4 ∨ ¬x5 ∨ x2

x1 ∨ x2 ∨ x4

x1 ∨ ¬x2 ∨ x5

¬x1 ∨ ¬x4 ∨ x5

x2 ∨ x4 ∨ ¬x5

MaxSAT encoding

¬x1 ∨ ∨ x2

x1 ∨ x2

p1 ∨ p2 ∨ p5 ∨ r1

p1 ∨ p2 ∨ p5 ∨ r2

p1 ∨ p2 ∨ p5 ∨ r5

n1 ∨ n4 ∨ p5 ∨ r5

n2 ∨ p4 ∨ n5 ∨ r4

Oliveras, Li, Wu, Chung and Ganesh Learning Shorter Clauses in SDCL SAT 2023, July 8th, l’Alguer 13 / 26

A MaxSAT Encoding for TRAIL-MINIMIZATION

For each variable xi in pα(F), we introduce three vars {ri ,pi ,ni}. We will add
soft clauses [ri] and hard clauses:

ri → ¬pi

ri → ¬ni

¬ri → pi = αi

¬ri → ni = ¬αi

If we remove x4 and x5 from α we obtain γ. Let us set
r4, r5 to true and r1, r2 to false.

The implications set ¬p4,¬n4,¬p5,¬n5 and
p1=x1, n1=¬x1, p2=¬x2, n2=x2.

F

x1 ∨ x2 ∨ x4

x1 ∨ ¬x2 ∨ x5

¬x1 ∨ ¬x4 ∨ x5

x2 ∨ x4 ∨ ¬x5

x3 ∨ x6 ∨ ¬x5

α = {xd
1 , x

d
4 , x5,¬xd

2 }

pα(F)

¬x1 ∨ ¬x4 ∨ ¬x5 ∨ x2

x1 ∨ x2 ∨ x4

x1 ∨ ¬x2 ∨ x5

¬x1 ∨ ¬x4 ∨ x5

x2 ∨ x4 ∨ ¬x5

MaxSAT encoding

¬x1 ∨ ∨ x2

x1 ∨ x2

x1 ∨ ¬x2

x1 ∨ ¬x2

n1 ∨ n4 ∨ p5 ∨ r5

n2 ∨ p4 ∨ n5 ∨ r4

Oliveras, Li, Wu, Chung and Ganesh Learning Shorter Clauses in SDCL SAT 2023, July 8th, l’Alguer 13 / 26

A MaxSAT Encoding for TRAIL-MINIMIZATION

For each variable xi in pα(F), we introduce three vars {ri ,pi ,ni}. We will add
soft clauses [ri] and hard clauses:

ri → ¬pi

ri → ¬ni

¬ri → pi = αi

¬ri → ni = ¬αi

If we remove x4 and x5 from α we obtain γ. Let us set
r4, r5 to true and r1, r2 to false.

The implications set ¬p4,¬n4,¬p5,¬n5 and
p1=x1, n1=¬x1, p2=¬x2, n2=x2.

F

x1 ∨ x2 ∨ x4

x1 ∨ ¬x2 ∨ x5

¬x1 ∨ ¬x4 ∨ x5

x2 ∨ x4 ∨ ¬x5

x3 ∨ x6 ∨ ¬x5

α = {xd
1 , x

d
4 , x5,¬xd

2 }

pα(F)

¬x1 ∨ ¬x4 ∨ ¬x5 ∨ x2

x1 ∨ x2 ∨ x4

x1 ∨ ¬x2 ∨ x5

¬x1 ∨ ¬x4 ∨ x5

x2 ∨ x4 ∨ ¬x5

MaxSAT encoding

¬x1 ∨ ∨ x2

x1 ∨ x2

x1 ∨ ¬x2

x1 ∨ ¬x2

Oliveras, Li, Wu, Chung and Ganesh Learning Shorter Clauses in SDCL SAT 2023, July 8th, l’Alguer 13 / 26

A MaxSAT Encoding for TRAIL-MINIMIZATION

For each variable xi in pα(F), we introduce three vars {ri ,pi ,ni}. We will add
soft clauses [ri] and hard clauses:

ri → ¬pi

ri → ¬ni

¬ri → pi = αi

¬ri → ni = ¬αi

If we remove x4 and x5 from α we obtain γ. Let us set
r4, r5 to true and r1, r2 to false.

The implications set ¬p4,¬n4,¬p5,¬n5 and
p1=x1, n1=¬x1, p2=¬x2, n2=x2.

F

x1 ∨ x2 ∨ x4

x1 ∨ ¬x2 ∨ x5

¬x1 ∨ ¬x4 ∨ x5

x2 ∨ x4 ∨ ¬x5

x3 ∨ x6 ∨ ¬x5

α = {xd
1 , x

d
4 , x5,¬xd

2 }

pα(F)

¬x1 ∨ ¬x4 ∨ ¬x5 ∨ x2

x1 ∨ x2 ∨ x4

x1 ∨ ¬x2 ∨ x5

¬x1 ∨ ¬x4 ∨ x5

x2 ∨ x4 ∨ ¬x5

γ = {x1,¬x2}

pγ(F)

¬x1 ∨ ∨ x2

x1 ∨ x2

x1 ∨ ¬x2

x1 ∨ ¬x2

Oliveras, Li, Wu, Chung and Ganesh Learning Shorter Clauses in SDCL SAT 2023, July 8th, l’Alguer 13 / 26

A MaxSAT Encoding for TRAIL-MINIMIZATION

For each variable xi in pα(F), we introduce three vars {ri ,pi ,ni}. We will add
soft clauses [ri] and hard clauses:

ri → ¬pi

ri → ¬ni

¬ri → pi = αi

¬ri → ni = ¬αi

KEY IDEA: by setting the ri ’s to appropriate values, the
MaxSAT encoding allows us to explore the reducts of all
possible subsets of α.
The soft clauses force the MaxSAT solver to pick the
smallest subset with satisfiable reduct.

F

x1 ∨ x2 ∨ x4

x1 ∨ ¬x2 ∨ x5

¬x1 ∨ ¬x4 ∨ x5

x2 ∨ x4 ∨ ¬x5

x3 ∨ x6 ∨ ¬x5

α = {xd
1 , x

d
4 , x5,¬xd

2 }

pα(F)

¬x1 ∨ ¬x4 ∨ ¬x5 ∨ x2

x1 ∨ x2 ∨ x4

x1 ∨ ¬x2 ∨ x5

¬x1 ∨ ¬x4 ∨ x5

x2 ∨ x4 ∨ ¬x5

γ = {x1,¬x2}

pγ(F)

¬x1 ∨ ∨ x2

x1 ∨ x2

x1 ∨ ¬x2

x1 ∨ ¬x2

Oliveras, Li, Wu, Chung and Ganesh Learning Shorter Clauses in SDCL SAT 2023, July 8th, l’Alguer 13 / 26

SDCL with Redundant Clause Minimization

α := ∅
while true do

α := unitPropagate(F , α)
if conflict found then

C := analyzeConflict()
F := F ∧ C
if C is the empty clause then return UNSAT
α := backjump(C, α)

else if Pα(F) is satisfiable then
γ := minimize(α)
C := analyzeConflict(¬γ)
F := F ∧ C
α := backjump(C, α)

else
if all variables are assigned then return SAT
α := α ∪ Decide()

Oliveras, Li, Wu, Chung and Ganesh Learning Shorter Clauses in SDCL SAT 2023, July 8th, l’Alguer 14 / 26

Outline of the Talk

1 Preliminaries
SAT, CDCL and Limitations
Redundancy Notions

2 SDCL
From CDCL to SDCL
Pruning Predicates

3 Learning Shorter Redundant Clauses
Motivation
Difficulty of the Problem
A MaxSAT Encoding
SDCL with Redundant Clause Minimization

4 Experimental Evaluation
Design Decisions
Evaluation

5 Conclusions

Oliveras, Li, Wu, Chung and Ganesh Learning Shorter Clauses in SDCL SAT 2023, July 8th, l’Alguer 15 / 26

Design Decisions - Order of calls

There are two calls to be made:
1 Check pα(F) for satisfiability (SAT) [external SAT solver].
2 Check whether ∃ γ ⊆ α such that pγ(F) is satisfiable [external

MaxSAT solver].

It would suffice to only make the MaxSAT call.
However, the MaxSAT call is more expensive than the SAT one.

If we first make the SAT call and, only if satisfiable,
we make the MaxSAT call, are we missing something?

Could it be the case that the SAT call returns unsat (pα(F) unsat),
but the MaxSAT call would have found some γ ⊆ α with pγ(F) satisf.?

Proposition

Given assignments with γ ⊆ α if pγ(F) is satisfiable, pα(F) is also satisfiable.

This means that sometimes we will do the two calls but, since usually
the SAT call will be unsat, we will mostly only make the SAT call (the
cheaper one).

Oliveras, Li, Wu, Chung and Ganesh Learning Shorter Clauses in SDCL SAT 2023, July 8th, l’Alguer 16 / 26

Design Decisions - Frequency of Calls

How often to check for the satisfiability of pα(F)?

Without clause minimization, we should check it as soon as possible:
the smaller α, the smaller the lemma to be learned

With clause minimization, there is a compromise:

The sooner we find pα(F) satisf., the sooner we prune the search
Smaller α have smaller pα(F), and hence easier to solve
Larger α have higher chances of having pα(F) satisfiable
Late calls lead to same-size lemmas (because of minimization)

In our implementation:

Define a decision level D at which to check pα(F) for satisfiability
If % of satisfiable checks is smaller than (e.g. 15%) increment D
If % of satisfiable checks is larger than (e.g. 15%) decrement D

Oliveras, Li, Wu, Chung and Ganesh Learning Shorter Clauses in SDCL SAT 2023, July 8th, l’Alguer 17 / 26

Experimental Setting

Implemented SDCL solver with clause minimization on top of CDCL
solver MapleSAT [LGPC16]

Used EvalMaxSAT [Ave20] as MaxSAT solver

No modification to MapleSAT parameters (not even decision heuristics!)

Run experiments on benchmarks that are known to be good for SDCL

Oliveras, Li, Wu, Chung and Ganesh Learning Shorter Clauses in SDCL SAT 2023, July 8th, l’Alguer 18 / 26

Data on Lemma Size Reduction

On this benchmark, in about 70% of the minimization calls the size of the
asserting lemma was at most 0.3 times the size of the all-decisions clause

Oliveras, Li, Wu, Chung and Ganesh Learning Shorter Clauses in SDCL SAT 2023, July 8th, l’Alguer 19 / 26

Experimental Results

Results on mutilated chessboard and bipartite perfect matching problems:

SaDiCaL MapleSDCL
Benchmark Kissat Positive Filtered CDCL SDCL SDCL-min
mchess14 4.6 5682 3.6 11.7 7.3 2.7
mchess15 30.1 > 7200 13.8 54.3 24.7 5.5
mchess16 107 > 7200 19.5 439 191 9
mchess17 2293 > 7200 64.8 5038 517 25.8
mchess18 352 > 7200 71.8 > 7200 3803 52.8
mchess19 > 7200 > 7200 > 7200 > 7200 3578 128
mchess20 3720 > 7200 > 7200 > 7200 > 7200 369
mchess21 > 7200 > 7200 > 7200 > 7200 > 7200 977
mchess22 > 7200 > 7200 > 7200 > 7200 > 7200 4507
mchess23 > 7200 > 7200 > 7200 > 7200 > 7200 6041
randomG-Mix-17 > 7200 > 7200 > 7200 2837 1916 257
randomG-Mix-18 > 7200 > 7200 > 7200 > 7200 > 7200 1683
randomG-n17 > 7200 > 7200 > 7200 1266 688 157
randomG-n18 > 7200 > 7200 > 7200 > 7200 > 7200 2350

Oliveras, Li, Wu, Chung and Ganesh Learning Shorter Clauses in SDCL SAT 2023, July 8th, l’Alguer 20 / 26

Outline of the Talk

1 Preliminaries
SAT, CDCL and Limitations
Redundancy Notions

2 SDCL
From CDCL to SDCL
Pruning Predicates

3 Learning Shorter Redundant Clauses
Motivation
Difficulty of the Problem
A MaxSAT Encoding
SDCL with Redundant Clause Minimization

4 Experimental Evaluation
Design Decisions
Evaluation

5 Conclusions

Oliveras, Li, Wu, Chung and Ganesh Learning Shorter Clauses in SDCL SAT 2023, July 8th, l’Alguer 21 / 26

Conclusions

SDCL is a promising approach for enhancing CDCL with more powerful
reasoning power

There is A LOT of space for improvement (SDCL is not as mature as
CDCL, we should be patient!)

In this work, we have studied one concrete aspect: how to learn smaller
redundant clauses. Other research directions remain open.

Need for MaxSAT solvers that are good at quick queries (at most 0.1s?)

Oliveras, Li, Wu, Chung and Ganesh Learning Shorter Clauses in SDCL SAT 2023, July 8th, l’Alguer 22 / 26

Conclusions

SDCL is a promising approach for enhancing CDCL with more powerful
reasoning power

There is A LOT of space for improvement (SDCL is not as mature as
CDCL, we should be patient!)

In this work, we have studied one concrete aspect: how to learn smaller
redundant clauses. Other research directions remain open.

Need for MaxSAT solvers that are good at quick queries (at most 0.1s?)

Thank you for your attention!

Oliveras, Li, Wu, Chung and Ganesh Learning Shorter Clauses in SDCL SAT 2023, July 8th, l’Alguer 23 / 26

References I

[AFT11] Albert Atserias, Johannes Klaus Fichte, and Marc Thurley, Clause-learning
algorithms with many restarts and bounded-width resolution, J. Artif. Intell.
Res. 40 (2011), 353–373.

[Ave20] Florent Avellaneda, A short description of the solver EvalMaxSAT, Maxsat
evaluation 2020, 2020, pp. 8–9.

[Hak85] Armin Haken, The intractability of resolution, Theor. Comput. Sci. 39
(1985), 297–308.

[HKB17] Marijn J. H. Heule, Benjamin Kiesl, and Armin Biere, Short proofs without
new variables, Automated deduction - CADE 26 - 26th international
conference on automated deduction, gothenburg, sweden, august 6-11,
2017, proceedings, 2017, pp. 130–147.

[HKB19] Marijn J. H. Heule, Benjamin Kiesl, and Armin Biere, Encoding redundancy
for satisfaction-driven clause learning, Tools and algorithms for the
construction and analysis of systems - 25th international conference,
TACAS 2019, held as part of the european joint conferences on theory and
practice of software, ETAPS 2019, prague, czech republic, april 6-11, 2019,
proceedings, part I, 2019, pp. 41–58.

Oliveras, Li, Wu, Chung and Ganesh Learning Shorter Clauses in SDCL SAT 2023, July 8th, l’Alguer 24 / 26

References II

[HKSB17] Marijn J. H. Heule, Benjamin Kiesl, Martina Seidl, and Armin Biere,
Pruning through satisfaction, Hardware and software: Verification and
testing - 13th international haifa verification conference, HVC 2017, haifa,
israel, november 13-15, 2017, proceedings, 2017, pp. 179–194.

[JBH10] Matti Järvisalo, Armin Biere, and Marijn Heule, Blocked clause elimination,
Tools and algorithms for the construction and analysis of systems, 16th
international conference, TACAS 2010, held as part of the joint european
conferences on theory and practice of software, ETAPS 2010, paphos,
cyprus, march 20-28, 2010. proceedings, 2010, pp. 129–144.

[KSTB16] Benjamin Kiesl, Martina Seidl, Hans Tompits, and Armin Biere,
Super-blocked clauses, Automated reasoning - 8th international joint
conference, IJCAR 2016, coimbra, portugal, june 27 - july 2, 2016,
proceedings, 2016, pp. 45–61.

[LGPC16] Jia Hui Liang, Vijay Ganesh, Pascal Poupart, and Krzysztof Czarnecki,
Learning rate based branching heuristic for SAT solvers, Theory and
applications of satisfiability testing - SAT 2016 - 19th international
conference, bordeaux, france, july 5-8, 2016, proceedings, 2016,
pp. 123–140.

Oliveras, Li, Wu, Chung and Ganesh Learning Shorter Clauses in SDCL SAT 2023, July 8th, l’Alguer 25 / 26

References III

[PD11] Knot Pipatsrisawat and Adnan Darwiche, On the power of clause-learning
SAT solvers as resolution engines, Artif. Intell. 175 (2011), no. 2, 512–525.

Oliveras, Li, Wu, Chung and Ganesh Learning Shorter Clauses in SDCL SAT 2023, July 8th, l’Alguer 26 / 26

	Preliminaries
	SAT, CDCL and Limitations
	Redundancy Notions

	SDCL
	From CDCL to SDCL
	Pruning Predicates

	Learning Shorter Redundant Clauses
	Motivation
	Difficulty of the Problem
	A MaxSAT Encoding
	SDCL with Redundant Clause Minimization

	Experimental Evaluation
	Design Decisions
	Evaluation

	Conclusions
	Referències

