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Problem setting

Let a propositional formula ¢ be given.
SAT problem

» |s there an assignment « : vars(¢) — {0, 1} such that «
satisfies ?
» SAT is NP complete. [Cook 1971, Levin 1973]

Model counting problem (#SAT)

» How many assignments « : vars(¢) — {0, 1} satisfying ¢ are
there?

» #SAT is #P complete. [Valiant 1979]
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NP vs. #P

» Model counting is at least as hard as SAT

» [Toda 1991]: PH can be solved with #P oracle in polynomial
time

— under common complexity theoretic assumptions,
#SAT is much harder than SAT
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Applications

Plenty of real-world applications:
» probabilistic reasoning
> risk analysis

» explainable artificial intelligence
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Model counting solving
Model Counting Competition at SAT since 2020
[Fichte, Hecher, Hamiti 2020]
CDCL based

» adapt common techniques from SAT solving for model
counting

» solver SharpSAT [Thurley 2006]

Knowledge compilation

> represent formula using an other structure on which counting
is easy, e.g. restricted circuits (usually Decision DNNFs)

» solver D4 [Lagniez, Marquis 2017]

FPT algorithms

P> e.g. tree decomposition based solver DPDB
[Fichte, Hecher, Thier, Woltran 2020]
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Proof systems

Proof systems [Cook, Reckhow 1979]
A proof system P for model counting has the following properties:

» Soundness: if there is a P-proof that ¢ has ¢ models, then
this is correct

» Completeness: if ¢ has ¢ models, then there is a P-proof for
that

» P-proofs are efficiently verifiable
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Why study proof systems?

> Aim: efficient extraction of proofs from a solver
— requires strong enough proof system that can express all steps
of a solver

Proof logging
verification of proofs — verification of solver outputs

Understanding of solver performance
© has no short P-proof — solver requires long running time to

solve ¢
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Proof systems for #SAT

There exist two formal proof systems for model counting so far.
keps(#SAT) [Capelli SAT'19]

> “Knowledge Compilation based Proof System”

> static proof system based on Decision DNNFs

» can be used to verify the trace of a modified D4
» some lower bounds follow from Decision DNNFs

MICE [Fichte, Hecher, Roland SAT'22]

> “Model counting Induction by Claim Extension”

» line-based proof system

» can be used to verify traces of SharpSAT, D4 and DPDB
» no proof complexity results are known

— we do proof complexity analysis for this proof system
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Our contributions

Simplified proof system MICE’

» more intuitive than MICE and uses simpler rules with less
conditions

» polynomially equivalent to MICE

Proof complexity of MICE'

» exponential lower bound for MICE’

— formulas are difficult for many modern solvers
(without preprocessing)
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The MICE’ proof system

MICE’ is a line-based proof system.
Proof lines
Every line is a claim which is a 3-tuple (F, A, ¢) with:
» Fis a CNF,
> A is a partial assignment of variables of F called assumption,

> ¢ is a count.

The claim states that F under assumption A has exactly ¢ models.

Example

Claim ({aV b,bV c}, {a = 1}, 3) represents models
> {a=1,b=0,c =0},
» {a=1,b=0,c=1},
> {a=1b=1c=1}.
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MICE' proofs

Let formula ¢ be given.
MICE’ proof

» A MICE’ proof 7 of ¢ is a sequence of claims
Iy oo Ik

derived only with the MICE’ rules such that

Ik = (v,0,¢)

for some ¢ € N.

P> 7 proves that ¢ has exactly ¢ models.

Olaf Beyersdorff, Tim Hoffmann, Luc Spachmann Proof Complexity of Propositional Model Counting 11/26



The MICE’ derivation rules - overview
Axiom 7(0), 0.1)

(F1, A1, c1)
(FA, cp - 2lvars(F)\(vars(F)Uvars(A))])

Extension

> (E1)F CF
> (E-2) Alyars(Fy) = A1
» (E-3) A satisfies F \ Fy

Composition (F,Ar,a) -+ (F,Ancn)
(F?szie[n] ¢i)

> (C-1) vars(Ay) = vars(Az) = ... = vars(A,) and A; # A; for i # |
> (C-2) AC A foralli € [n]
>

(C-3) there exists a resolution refutation of AU F U {A; | i € [n]}

(F17A17C1) (F27A27C2)
(F1UF27A1UA27C1'C2)

(J-1) A; and A; are consistent
(J-2) vars(Fy) N vars(Fy) C vars(A;) for i € {1,2}

Join

>
>
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The Axiom rule

Axiom

(0,0,1)

(0,0,1) is usually the first claim to start a proof with
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The Extension rule

Extension
(F1,A1,0)
(F}A, Cc1 - 2k)
with k = |vars(F) \ (vars(F1) U vars(A))|
> (E—l) FCF

> (E'2) A‘vars(ﬁ) =A
» (E-3) A satisfies F \ Fy

Examples
({aV b},0,3)
({avb,avecVvd} {d=1}6)
(0,0,1)

> if a is a model of ¢: (o,01)
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The Composition rule
Composition

(FaAlycl) (FaAan)
(F’AaZIE[n] Ci)

» (C-1) vars(Ay) = vars(A2) = ... = vars(A,) and A; # A; for
i#J

> (C-2) AC A, forall j € [n]

» (C-3) there exists a resolution refutation of
AUFU{A;|ie€|[n]}

Intuition
We combine sets of models.

» (C-1) ensures that we do not count models twice

» (C-3) ensures that there are no additional models

Olaf Beyersdorff, Tim Hoffmann, Luc Spachmann Proof Complexity of Propositional Model Counting 15/26



The Composition rule

Examples

> (90’{‘?:0}7C0) (cp,{a: 1}7C1)
(907 @7 co + Cl)

with resolution refutation for (C-3)

a a
0
» for unsatisfiable ¢: ——
(.0,0)
with some resolution refutation of ¢ for (C-3)
G G . Cn
0
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The Join rule

Join
(F1,A1, 1) (F2,A2, @)

(FLUF,AfUAz 1 - @)

» (J-1) A1 and A, are consistent
» (J-2) vars(F1) Nvars(Fy) C vars(A;) for i € {1,2}
Intuition

» F; and F; are independent under assignments A;, A

P> we can pair every model of F; with every model of F,

Examples
({avbVve} {e=1},3) ({cvdve},{e=1}3)
({avbVve,cvdve},{e=1}09)

| 4
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MICE Simplified MICE’
[Fichte, Hecher, Roland 2022] [This paper]

[ — Exactly One Model, EE—
(F,V, A1) Axiom 0,0,1)

> (0-1) vars(A) = V
> (0-2) A satisfies F

(F1, V1, A1, ¢) (F1,A1,c1)

Extension
(F,V,A,c) (FAc - 2lvars(F)\ (vars(Fy ) Uvars(A)) [y
> E)FR CFRYy CVv > (ENFR CF
> (B A, = A > (E2) Aluasir) = A
> (E-3) Asatisfies F \ F; > (E-3) Asatisfies F \ F,
> (B4 v\ Vv, C vars(4)
>  (E5)forevery C € F A‘v\v, does not satisfy C
(F; Vi A, e) --- (F,V, An cn) Composition (FiA,a) -+ (F,Ajcn)
(Fs Vi A 2ierm <i) (F, A Eign <)
> (C1)vars(A) = vars(Ay) = . . . = vars(A,) > (c1)
and A, 7 A, fori o j vars(A;) = vars(A;) = . . . = vars(A,)
nd A, A; for i j
> (c2)A C A foralli €[] and A, A fori 7
> (C-3) there exists a resolution refutation of ¥ (CAC A foralli € [n]
AU{c|, |ceFrUA{A |i€ m} P (C-3) there exists a resolution refutation of
AUFUA{A | i€}
(F1,Vi,A,aa) (R, Vo, Az, @) Join (Fi, A, a) (R, A2, 0)
(FLUF, ViUV, AL U Ay, - @) (FLUF, AL UAy ¢ - @)
P (J-1) A, and A, are consistent > (J-1) A, and A, are consistent
> 2)v, NV, Cvars(4) fori € {1,2} > (J-2) vars(Fy) M vars(F,) C vars(A,) for
i€ {1,2}

> (3 vars(F) N (v, U V) \ V) = 0Dfori € {1,2}
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MICE’ is a proof system

Theorem [basically Fichte, Hecher, Roland 2022]
MICE’ is sound and complete.

Completeness
Let ¢ be an arbitrary formula.
> start with Axiom claim [4 = (0,0,1)

» for every model « of ¢, derive I, = (p, a, 1) with Extension
from I,

» apply Composition to all claims 1, to derive | = (i, 0, c)

Theorem
MICE’ is equivalent to MICE.
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MICE’ complexity measures

We use two different measures.

Proof size

» describes the number of MICE’ steps plus the number of
clauses in all resolution refutations

» corresponds to the size of a complete encoding of 7

Number of MICE' steps

> ignores the sizes of the resolution refutations
» corresponds to the usage of a SAT oracle

» lower bound for MICE’ steps — lower bound for proof size
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Lower bounds for the proof size
We can use MICE’ as proof system for UNSAT:
» ¢ is UNSAT exactly if there is a MICE’ derivation of claim
(,0,0).
Proposition
MICE’ is equivalent to resolution for unsatisfiable formulas.

» Proof Idea: combine all resolution refutations of a MICE’
proof

Lower bounds
» lower bounds from resolution apply also for MICE’

» e.g. Pigeonhole formulas (PHP) require MICE’ proofs of
exponential size

» However, we can prove PHP with a single MICE’ step
(one Composition).

> Next: Strengthen this result to #steps
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Main result - lower bounds for number of MICE’ steps

XOR-PAIRS formulas
For i,j € [n] the formula XOR-PAIRS,, has variables x;, z; and
clauses encoding

Zjj = Xj D Xj.

Theorem
Any MICE’ proof 7 of XOR-PAIRS, requires 2°2(") MICE’ steps.
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Proof of the lower bound

Consider an arbitrary MICE’ proof 7 of XOR-PAIRS,,.

Join does not increase the count
If two claims (F1, A1, c1) and (F2, Az, ¢2) are joined, then
min(cy, ) = 1.

Extension does not increase the count
If claim (F, A, c) is derived with Extension from (Fi, A1, c1), then
c=1_C.

There are many models
XOR-PAIRS,, has 2" models
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Putting it together

» Axiom derives claims with count 1

» Extension does not change the count
» Join does not change the count

» Composition adds counts

Lower bound for tree-like MICE’

OJON OO
©

Figure: we can use every Axiom claim only once — we need 2" Axiom
claims

Lower bound for general MICE' is more technical
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Summary

Simplified proof system MICE’
» more intuitive than MICE and uses simpler rules with less
conditions
» equivalent to MICE

Lower bounds
» XOR-PAIRS, formulas need 22" MICE’ steps

— XOR-PAIRS,, are difficult for many modern solvers (without
preprocessing), even with access to arbitrarily good SAT
solvers
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Open questions

Improve succinctness
Do we find stronger proof system such that
» XOR-PAIRS has short proofs?
» preprocessing from current solvers can be handled?

Relation to other proof systems

» There is an alternative approach to prove lower bounds for
MICE' using Decision DNNFs techniques.
[Bova, Capelli, Mengel, Slivovsky 2016]

» How do MICE’ and the knowledge compilation based proof
system relate to each other? [Capelli 2019]

> Relation to the Proof System which will be presented
tomorrow? [Bryant, Nawrocki, Avigad, Heule SAT'23]
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