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DPLL

Algorithm 1: DPLL
while not solved do
if con�ict then backtrack()
else if unit then propagate()
else branch()

State: partial assignment
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Resolution

É Search tree ; resolution proof

C ∨ v D∨ v
C ∨D

É Resolution lower bounds =⇒
DPLL lower bounds
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CDCL

Algorithm 2: CDCL
while not solved do
if con�ict then learn()
else if unit then propagate()
else

maybe forget()
maybe restart()
branch()

State: partial assignment
& learned clauses
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Resolution

É Search tree ; resolution proof

C ∨ v D∨ v
C ∨D

É Resolution lower bounds =⇒
CDCL lower bounds
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Resolution

É Search tree ; resolution proof

C ∨ v D∨ v
C ∨D

É Resolution lower bounds =⇒
CDCL lower bounds
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CDCL vs Resolution

É CDCL proofs are in (general) resolution form
É DPLL proofs are in weaker “tree-like” form
É There are formulas with polynomial resolution proofs but all tree-like proofs are exponential
É Is CDCL as powerful as general resolution?

É Partial results in 2000s [Beame, Kautz, Sabharwal ’04]
[Van Gelder ’05]

[Hertel, Bacchus, Pitassi, Van Gelder ’08]
[Buss, Ho�mann, Johannsen ’08]

É Yes (under natural model) [Pipatsrisawat, Darwiche ’09]
[Atserias, Fichte, Thurley ’09]

[Beyersdor�, Böhm ’21]
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CDCL equivalent to Resolution: Statement

Theorem [Pipatsrisawat, Darwiche ’09]
With non-deterministic variable decisions,
CDCL can e�ciently �nd reproduce resolution proofs

Theorem [Atserias, Fichte, Thurley ’09]
With random variable decisions,
CDCL can e�ciently �nd bounded-width resolution proofs
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Simulation Overhead

É Given formula F and resolution proof of length L,
CDCL can reproduce proof in O(n4 L) steps. [Pipatsrisawat, Darwiche ’09]

[Atserias, Fichte, Thurley ’09]

É O(n3 L) [Beyersdor�, Böhm ’21]

É Theory: Polynomial ,
É Practice: But my solver runs in linear time /

É Can we simulate resolution with less overhead?
É If not, why?
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Simulation Overhead

Theorem [Fleming, Ganesh, Kolokolova, Li, V]
CDCL needs linear overhead to reproduce resolutions proofs

É Exist formulas with O(n) resolution proofs that require Ω(n2) steps in CDCL.

É Clauses learned by CDCL have syntactical restrictions
É De�ne restricted resolution
É Prove separation between restricted and general resolution
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CDCL equivalent to Resolution: Simulation
É Derivation π= C1, . . . , Ct.
É Goal: learn every clause Ci ∈ π.

É C absorbed if learning C does not enable more unit propagations.

Example
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É Goal: learn every clause Ci ∈ π.

É C absorbed if learning C does not enable more unit propagations.

Example

Algorithm 3: Simulation
for Ci ∈ π do
while Ci not learned do
if con�ict then

learn()
restart()

else if unit then propagate()
else assign a literal in Ci to false
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Formalizing CDCL

É Every resolution proof can be decomposed into a sequence of input resolution derivations.
É The �nal clause of each derivation is called a lemma, and can be used in future derivations.

Lem
Lem

Lem

É Natural restriction: all lemmas must be 1-empowering
É Finer restriction: all lemmas must follow merges

Enable more propagations

A 1-empowering clause
contains a merge
in its derivation

Premises share a literal:
x ∨ y∨ z x ∨ z

x ∨ y
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Merge Resolution
Building on [Andrews ’68]

De�nition
É Sequence of input resolution derivations
É Lemmas (reusable clauses) follow merges

Lem
Lem

Lem

Properties
É CDCL produces merge resolution proofs.
É Merge resolution simulates resolution with O(n) overhead.
É Exist formulas with O(n) resolution proofs that require Ω(n2) merge resolution proofs.
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Tricky Formulas for Merge Resolution

w1
w2

wn−1
wn

(w1 = w2)≡ (w1 ∨w2)∧ (w1 ∨w2)

(wn−1 = wn)≡ (wn−1 ∨wn)∧ (wn−1 ∨wn)
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Formula Description
É wi,j = wi,j+1 for i ∈ [`], j ∈ [n− 1]
É (wı̂,j = wı̂,j+1)→ (xi→ xi+1) for i ∈ [n]

É ` is ≈ log n
É ı̂ means i (mod `)
É Expanded in CNF
É + Boundary constraints
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Short Resolution Proof
1 Derive wi,1 = wi,n for all i ∈ [`]
2 Simplify chain of implications
3 Derive contradiction

Impossibility (Intuition)
É CDCL cannot remember wi,1 = wi,n

É Must rederive wi,1 = wi,n for all i ∈ [n]
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Open Problems

Overhead
É One n explained, n2 remaining.
É Are merge resolution proofs easier to simulate by CDCL?
É Can we improve learning to avoid overhead?

Assumptions
É Branching
É Memory
É Restarts
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Take Home

É CDCL needs linear overhead to simulate resolution.

Open Problems
É Improve or explain remaining overhead.
É Improve learning.

Thanks!
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