
Around the Fine-Grained
Complexity of SAT

Ryan Williams, MIT

???

2𝑛?

1.99𝑛? 1.001𝑛?

(picture courtesy of the Simons Institute, UC Berkeley)

My Goal

To tell you what we know so far about the
time complexity of SAT, and all it connects to

A theory of “fine-grained complexity”, developed over the last
20 years, uses hypotheses about SAT (and other problems) to

reason about the complexity of problems in a way that
NP-completeness never could before

1. I personally believe SAT can probably be solved much faster,
and researchers are currently in various “local optima”

2. It’s important to know what can be mathematically proved
about how well (or poorly) SAT solvers could possibly run

3. The time complexity of SAT is related to much more than NP

4. Solving Circuit SAT in the worst-case, even slightly faster than
brute-force, implies circuit complexity lower bounds

Flavors of SAT

Circuit-SAT = { satisfiable Boolean circuits }

Formula-SAT = { satisfiable propositional formulas }

CNF-SAT = { satisfiable boolean formulas in CNF }

𝒌-SAT = { SAT where all clauses have at most 𝒌 literals}

Measures of SAT instances:

• 𝑛 = number of variables

• 𝑚 = number of clauses/connectives/gates

All are solvable in 𝟐𝒏 ⋅ 𝒑𝒐𝒍𝒚 𝒎 time.

All are NP-complete, so are equivalent from the point of
view of P versus NP. But their actual time complexities

are apparently quite different!

The best-known algorithms for 𝒌-SAT
run slower and slower, as 𝒌 increases

Q: 3-SAT, 4-SAT, CNF-SAT are all NP-complete…
so why don’t they have the same running time?

A: Reducing from 4-SAT to 3-SAT increases the variables!

We introduce a new variable for every clause.

Example: a 3-SAT algorithm using 𝒄𝒏 time would only
imply a ≈ 𝒄𝒏+𝒎 time algorithm for 4-SAT,
using the typical polynomial-time reduction

Generally speaking, 𝒎 >> 𝒏 …

Moral: The representation of the formula matters.

Time Complexity of 𝒌-SAT (with respect to 𝒏)

[MS 85] 1.62n for 3-SAT, 1.84n for 4-SAT (DPLL-like branching)

In general: 𝟐
𝒏 𝟏−

𝒄

𝟐𝒌 for k-SAT for a constant 𝒄 > 𝟏

[PPZ 97] 𝟐𝒏 𝟏−𝟏/𝒌 for k-SAT (randomized branching w/ restarts

(e.g. 1.59n for 3-SAT, 1.69n for 4-SAT) + unit clause rule)

[PPSZ 98] 1.308n for Unique 3-SAT (randomized w/ bounded resolution)

𝟐
𝒏 𝟏−

𝒄

𝒌 for 𝒄 ≈ 𝝅𝟐/𝟔 > 1 [notoriously difficult to analyze!]

[Schoening 99] 𝟐𝒏 𝟏−𝒄′′/𝒌 for k-SAT, 1.34n for 3-SAT (local search)

[Hertli 11] 1.308n for 3-SAT, 1.47n for 4-SAT (better PPSZ analysis)

[Chan-W 18] 𝟐𝒏 𝟏−𝒄′′′/𝒌 for #k-SAT (polynomial method)

[HKZZ 19] 2
𝑛 1−

𝑐′′′

𝑘 time, 1.307n for Unique 3-SAT (PPSZ + ``bias’’)

[Scheder 21] The PPSZ algorithm achieves 1.307n for 3-SAT already ☺

All known algorithms take > 2n(1 - c/k) time to solve 𝒌-SAT

All running times converge to 2n as 𝒌→∞

CNF-SAT: best known algs take O(2n – n/(log(m/n))) time [Schuler’05,CIP’06]

Refinements of P ≠ NP

There is a dramatic difference in how well various
NP-complete problems can be solved in practice.

A formal understanding of ‘what is possible’ requires
more ‘fine-grained’ assumptions than P ≠ NP.

We need lower bound hypotheses that guide us to a
better understanding of the frontier: what we can and
cannot expect to solve much faster than brute force.

Ultimately, we want to find better algorithms, even if
they take super-polynomial time. (And if we can’t, we
want to know what the consequences would be!)

Two Major Conjectures About SAT

• Is 3-SAT in 𝟐𝝐𝒏 time, for every constant 𝝐 > 𝟎?

Exponential Time Hypothesis [IPZ’01]: Conjectures “no”

ETH: “3-SAT is not in 𝟏 + 𝝐 𝒏 time, for some 𝝐 > 0”

• Is k-SAT in 𝟐𝜹𝒏 𝒑𝒐𝒍𝒚(𝒎) time for some universal 𝜹 < 1?

Strong ETH [IP’99,CIP’09]: Conjectures “no”

SETH: “For all 𝜹 < 𝟏, there is a 𝒌 such that
𝒌-SAT is not in 𝟐 − 𝜹 𝒏 poly(m) time”

Theorem: SETH implies ETH (not obvious!)

Useful: ETH and SETH imply many interesting predictions in TCS

3-SAT can’t be solved in 1.0000⋯01n time (for some number of 0’s)

CNF-SAT can’t be solved in 1.9999⋯9n time (for all numbers of 9’s)

Evidence for SETH and ETH?
All known algorithms are consistent with SETH and ETH

[Haken] General Resolution needs 𝟐𝛀 𝒏 size

[Beame Pitassi ‘96] k-CNFs need resolution proofs of size > 𝟐
𝛀

𝒏

𝒌

[Pudlak Impagliazzo ‘00] [Beck Impagliazzo '13]

There are unsatisfiable k-CNFs which require “regular” resolution

proofs of size 𝟐
𝒏−

𝒏

𝒌𝟎.𝟐𝟓 (“Strong ETH holds for DPLL”)

There are unsatisfiable k-CNFs which require general resolution proofs

of size (𝟏. 𝟓)
𝒏−

𝒏

𝒌𝟎.𝟐𝟓 (“ETH holds for CDCL”)

[Pudlak et al ’17] [Scheder Talebanfard ‘20]
There are satisfiable k-CNFs such that the “standard” version of PPSZ

requires 𝟐
𝒏 𝟏−

𝑶(𝟏)

𝒌 steps to solve, in expectation.

So, if SETH/ETH are false, we may need radically new algs!

Even improving over an exponent of 𝒏 𝟏 −
𝒄

𝒌
seems hard…

Tight lower bounds under ETH

Assuming ETH: the problems
Independent Set, Clique, Vertex Cover,
Dominating Set, Graph Coloring, Max Cut, Set
Splitting, Hitting Set, Min Bisection, Feedback
Vertex Set, Hamiltonian Path, Max Leaf Spanning
Tree, Subset Sum, Knapsack, Cluster Editing,
3-Dimensional Matching, Treewidth and many

others do not have 2𝜀 𝑛 time algorithms,
for various 𝜀 > 0.

Predictions Beyond NP!

For many fundamental polynomial-time problems,
improving the best known algorithms even
slightly, implies ¬SETH or ¬ETH

That is:

SETH and ETH predict the optimality of
many known polynomial-time algorithms!

“Hardness Within P”

Fine-Grained Complexity

Edit Distance: Given two 𝑛-bit strings 𝑥 and 𝑦, find the min number of
symbol insertions/deletions needed to transform 𝑥 into 𝑦

Well-known to be in 𝑂 𝑛2 time

[BI’14] [AHVW’15] SETH ⟹ NOT solvable in 𝑂 𝑛2−𝜖 time

d-SUM: Given 𝑛 numbers, are there 𝑑 that sum to zero?

In O 𝑛 𝑑/2 time.

Partial Match Queries: Given database 𝐷 of 𝑛 strings 𝑑-bits long, and given
𝑛 queries with wildcards, is there a query that matches a string in 𝐷?

In 𝑂(𝑛2𝑑) time.

CNF Batch Evaluation: Given a CNF on 𝑚 clauses and 𝑚100 assignments to
its variables, report the value of the CNF on all assignments.

In about 𝑚101 time.

Hardness Within P

[PW’10] ETH ⟹ 𝑑-SUM requires n(d) time

[W’05] SETH ⟹ NOT in 𝑛2−𝜀 ⋅ 2𝑜 𝑑 time for all 𝜀 > 0

[GKW’??] SETH ⟹ NOT in 𝑚101−𝜀 time for all 𝜀 > 0

A Natural Next Hypothesis?
The best known k-SAT algorithms run in time

2
𝑛 1−

𝑐

𝑘 for various universal 𝑐 > 1.

This bound is achieved by at least four different algorithms
(two of which resemble practical algorithms)

1. DPLL-Like Branching [PPZ,PPSZ]

2. Local Search [Schoening]

3. Random Restrictions/Switching Lemma [IMP’12]

4. Algebraic/Polynomial Evaluation [W,Chen-W’18]

Each one navigates the search space in different ways.
Yet they’re all stuck at the same bound…

A Natural Next Hypothesis?
The best known k-SAT algorithms run in time

2
𝑛 1−

𝑐

𝑘 for various universal 𝑐 > 1.

Is this particular dependence on 𝑘 necessary?

Could it be improved at all?

Super-SETH [myself, 2015]
There is NO unbounded function 𝑓(𝑘) such that

for infinitely many 𝑘, 𝑘-SAT is in 2
𝑛 1−

𝑓(𝑘)

𝑘 time.

SSETH ⇒ No 2
𝑛 1 −

log 𝑘

𝑘 time algorithm for 𝑘-SAT!

Completely consistent with our knowledge!

What We Know About Super SETH

1. The “standard” version of the PPSZ algorithm (for 𝑘-SAT)
cannot break Super SETH. [Scheder-Talebanfard’20]

2. Super SETH is false for Random k-SAT
For example, on the “planted k-SAT distribution” where we pick a
random assignment on 𝑛 variables, then choose 𝑂(𝑛) random clauses
consistent with the assignment:

𝑘-SAT is in 2
𝑛 1−

log2 𝑘

𝑘 time [Vyas-W’21, Lincoln-Yedida’21]

3. If there’s an algorithm running in 2
𝑛 1−

𝑓(𝑘)

𝑘 time on formulas
with exactly one SAT assignment, Super SETH is false [VW’21]

4. The best known algorithms for Partial Match Queries (based
on fast polynomial evaluation) cannot be easily extended to
refute Super SETH. [unpublished]

My Personal Opinion

I believe Super-SETH and SETH are false.

(But ETH, I don’t know…)

My belief in ¬SETH is the minority opinion.
(But the chances I’ll be proved wrong in my lifetime are nil ?!)

Even if SETH is true, my belief in
¬SETH led me to many ideas I’d

have never found otherwise.
That’s another talk…

New Complexity Theory
Through SAT Solving

Or: Why Did I Only Talk About
Faster Algorithms for CNF-SAT?

Faster Circuit-SAT algorithms?
This is open!

We know 𝑘-SAT can be solved in << 2n time

Q: Why can’t the above results be used to solve
Circuit-SAT faster than 2𝑛?

A: The transformation from Circuit Satisfiability to CNF
blows up the number of variables!

Introduces a new variable for each gate of the circuit

3-SAT: O(1.307n) time

𝒌-SAT: O(2n - cn/k)

CNF SAT: O(2n – n/log n)

Circuit-SAT Algs Imply Lower Bounds!

If Circuit-SAT is in
2𝑛

𝑛𝑙𝑜𝑔 𝑛 time

for all poly(n)-size circuits…

Then: Impossibility results for
computing certain functions with

small non-uniform circuits

Circuit-SAT Algs Imply Lower Bounds!

∃ ∀

O(2n/nlog n) time
Circuit-SAT Algorithm

Almost every “slice” of f
requires LARGE circuits!
[W’11,MW’18,CLW’20]

SAT? YES/NO

∃function f

∀

Analogous results hold for Formulas
and other representations!

SAT Solving Can Help Complexity Theory!

∃ ∀

O(2n/nlog n) time
Circuit-SAT Algorithm

Almost every “slice” of f
requires LARGE circuits!

SAT? YES/NO

∃function f

∀

Cryptographic Intuition:
Faster Circuit-SAT algorithms reveal a weakness of small circuits

Small circuits cannot “obfuscate” the all-zeroes function
as well as a black-box can!

x1 Size=nc

xn

2n /n10 time

0

1

0

1

1

0

1

0

1

0

0

1

x1 Size=nc

xn

Intuition: Why are such implications true?

Proposition: For every algorithm A computing SAT on black-boxes,
there is a box B such that A must call B for 2n times!

≥ 2n time
2n /n10 time

Black-Box

SAT:

Circuit

SAT:

Therefore: a faster Circuit SAT algorithm demonstrates a concrete difference
between a “white-box” circuit problem and a “black-box” problem

≥ 2n time

x1 Size

=nc

xn

Algorithmic Intuition: Faster Circuit-SAT algorithms show a strength of
“faster than 2n” algorithms!

A “quicker” algorithm can tell when a given circuit computes
the all-zeroes function!

2n /n10 time

0

1

0

1

1

0

1

0

1

0

0

1

x1 Size

=nc

xn

2n /n10 time

Black-Box

SAT:

Circuit

SAT:

Therefore: Faster-Than-𝟐𝒏 time Algorithms are “strong”
and Small Circuits are “weak”… allowing us to construct an

“algorithmically-defined function” which doesn’t have small circuits

Intuition: Why are such implications true?

≥ 2n time

Open Problems
• Give more evidence that SETH is true?

- Prove that ETH is equivalent to SETH?

Consider the Circuit-SAT problem on 𝜖𝑛 variables and
2𝑛 size. Clearly solvable in about 2𝑛+𝜖𝑛 time.
Theorem: If there is any 𝜀 > 0 such that this Circuit-SAT

problem is in 2𝑛+𝑜 𝑛 time, then ETH is false!

- Prove that ¬SETH implies an unlikely result in theoretical
computer science? We know it implies circuit complexity
lower bounds, but we expect those!

• Evidence against SETH?

Can general resolution refute all unsatisfiable 𝒌-CNF formulas
with proofs of size at most 𝟏. 𝟗𝟗𝒏?

• Give evidence that Super-SETH is false? ☺

Thank you!
Grazie!

